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1 Introduction 
The overall goal of phase I of the Self-Regenerative System (SRS) program (DARPA BAA 

03-44) was to develop technology for building military computing systems that could provide 
critical functionality at all times, in spite of damage caused by unintentional errors or attacks.  

A major problem today is that of our software monoculture. Critical infrastructure software 
applications such as web servers, database servers, routers, and name resolution servers to name 
only a few, are all shipped identically. An exploitable vulnerability present in one deployed 
software application strongly implies an exploitable flaw in all copies of that application. This 
situation provides adversaries with an overwhelming advantage and is very serious because it 
multiplies the impact of any vulnerability by the number of machines running the software that 
contains the vulnerability. Once a vulnerability is exposed, adversaries seek out machines that 
are using the software with which the vulnerability is associated and proceed to exploit the 
vulnerability. Thus, the software monoculture enables the spread of both worms, i.e., self-
replicating malicious code, and attacks that target specific servers.  

Drawing inspiration from biological systems in which genetic diversity provides immunity 
against a broad range of disease, the Genesis project sought to reproduce the genetic diversity 
found in nature by deliberately and systematically introducing diversity into software 
components. The basic idea was that while the phenotype (functional behavior) of software 
components would be similar, the resulting genotypes would contain enough variations to protect 
software applications against a broad class of attacks, including both self-replicating and directed 
attacks.  

In the past, the application of diversity for critical systems has been severely limited by the 
fact that creating diverse versions has been attempted, for the most part, by producing the 
versions using traditional, resource intensive methods. Creating two diverse web servers, for 
example, involved actually writing both implementations. Clearly, this approach would not yield 
a large number of diverse versions unless unrealistic amounts of resources were available. The 
Genesis project sought machine transformation techniques to automate the task of creating large 
number of program variants. 

The success metric as specified in the SRS program was that of automatically producing 100 
diverse but functionally equivalent versions of a software component such that no more than 
thirty-three versions of a component shared the same deficiency. We exceeded this goal through 
the use of novel program transformation techniques coupled with advances in virtual machine 
technology, with demonstrated good performance on a range of real-world and critical 
applications. 
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2 Genesis Overview 
In the Genesis approach, we took a biologically inspired approach to diversity in which we 

investigated the two fundamental aspects of computation, state and state change, and we 
introduce diversity systematically and comprehensively to both. In practice by “state” we mean 
the data upon which a computation operates and by “state change” we mean the changes effected 
by some interpreter (a hardware entity or a software interpreter) in response to a set of 
instructions. We took a very general view of these two notions so that some entities were viewed 
as part of a state at one point and as being involved in state change at a different point. For 
example, machine instructions were part of the operating state of a compiler, i.e., data, but they 
controlled an interpreter during program execution, i.e., instructions. Furthermore, we took a 
multi-hierarchical and composable view of diversity in which we combined transformations from 
different phases of a program’s lifecycle, from compile-time all the way to execution-time.   

The Genesis project was implemented as the Genesis Diversity Toolkit henceforth called the 
GDT. The GDT was a collection of compile-time, link-time, run-time, and post-processing tools 
that allowed diversification of C and C++ software. The Genesis toolkit included the following 
components: 
• Zephyr, a compiler infrastructure developed at the University of Virginia. 
• Diablo, an open source static binary rewriter developed at Ghent University in Belgium. 
• Strata, an application-level virtual machine developed at the University of Virginia, along with 

several modules to effect dynamic diversity techniques. 
2.1  Genesis Diversity Techniques 

The GDT supported the following diversity techniques: 
• Address Space Randomization (ASR). ASR was a link-time option, whereby the static 

(uninitialized and initialized) data segments were offset by a random amount.  This coarse-
grained technique obfuscated the location of critical variables. 

• Stack Space Randomization (SSR). This technique randomized the padding between stack 
frames. 

• Simple Execution Randomization (SER). This technique used a simple XOR encoding of a 
binary executable.  This was mainly a proof-of-concept implementation that has been 
deprecated by the development of Strong Instruction Set Randomization. 

• Strong Instruction Set Randomization (SISR). This technique protected applications against 
both known and unknown code-injection attacks.  

• Calling Sequence Diversity (CSD). This technique modified the calling convention of 
functions to incorporate a hidden extra argument whose value is both generated at run-time 
and dependent on the history of the calling context. This technique defended against return-to-
libc attacks [Nergal01]. 
The GDT provided defense-in-depth by allowing application developers to select and 

compose among various techniques. Note that the first three techniques, ASR, SSR, and SER 
provided only a limited amount of entropy relative to SISR and CSD. However, attack code 
tends to be fragile and even small perturbations in the execution environment will thwart attacks.  

Figure 1 illustrates the various configuration options for the Genesis toolkit. Developers 
could compose various techniques, specify various configuration parameters, and generate an 
arbitrary number of software variants. In practice, these various options were set via standard 
build scripts, e.g., makefiles. 
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Next we provide an overview of the Strata Virtual Machine and its role in the 
implementation of Strong Instruction Set Randomization and Calling Sequence Diversity. 
2.2  Genesis: Strata Virtual Machine 

At the core of our approach was Strata, a software 
dynamic translator (SDT) that implemented an 
application-level virtual machine. Strata was a small, 
efficient run-time execution environment that hosted, 
monitored and ran applications. Strata could affect an 
executing program by injecting new code, modifying 
some existing code, or controlling the execution of 
the program in some way.  

Strata dynamically loads an application and 
mediates application execution by examining and 
translating an application’s instructions before they 
execute on the host CPU (Figure 2). Strata essentially 
operates as a co-routine with the application that it is 
protecting. Translated application instructions are 

held in a Strata-managed cache called the fragment cache. The Strata virtual machine (VM) is 
first entered by capturing and saving the application context (e.g., program counter (PC), 
condition codes, registers, etc.). Following context capture, Strata processes the next application 
instruction. If a translation for this instruction has been cached, a context switch restores the 
application context and begins executing cached translated instructions on the host CPU. 

In the case of the GDT, Strata was used to support important run-time features of software 
diversity, including dynamic code encryption/decryption and calling sequence diversity. 

Figure 1. Genesis Diversity Toolkit Configuration Panel 

Figure 2. Strata Virtual Machine Architecture 
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2.3  Strong Instruction Set Randomization 
We provide a general overview of Instruction Set Randomization (ISR). A detailed 

description is provided in Appendix A. 
The main idea behind ISR for defending against any type of code-injection attack is to create 

and use a process-specific instruction set that is created by a randomization algorithm. Code 
injected by an attacker who does not know the randomization key will be invalid for the 
randomized processor thereby thwarting the attack. Such an approach is known as randomized 
instruction-set emulation (RISE) or instruction-set randomization (ISR) [Barrantes05, Kc03]. 

The basic operation of an ISR system is as follows. An encryption algorithm (typically 
XOR’ing the instruction with a key) is applied statically to an application binary to encrypt the 
instructions. The encrypted application is executed by an augmented emulator (e.g., Valgrind 
[Nethercote04] or Bochs [Lawton96]. The emulator is augmented to decrypt the application’s 
instructions before they are executed. 

When an attacker exploits a vulnerability to inject code, the injected code is also decrypted 
before emulation. Unless the attacker knows the encryption key/process, the resulting code will 
be transformed into, in essence, a random stream of bytes that, when executed, will raise an 
exception (e.g., invalid opcode, illegal address, etc.). 

The security of ISR in general depends on several key factors: the strength of the encryption 
process, protection of the encryption key, the security of the underlying execution process, and 
that the decrypted code will, when executed, raise an exception. The practicality of the approach 
is affected by the overheads in execution time and space introduced by the encryption and 
decryption process.  

Our implementation of ISR using the Strata Virtual Machine improved upon the prior art in 
three important ways: 
• We used a strong randomization algorithm—the Advanced Encryption Standard (AES).  
• We demonstrated that ISR using AES could be implemented practically and efficiently 

without requiring special hardware support. 
• Our approach detected malicious code before its execution. Previous approaches had relied on 

probabilistic arguments that execution of non-randomized foreign code would eventually 
cause a fault or runtime exception. 

2.4  Calling Sequence Diversity  
While code-injections attacks constitute the overwhelming majority of attacks today, other 

forms of attacks exist that do not require the execution of foreign exploit code. For example, in a 
return-to-libc attack, an attacker supplies malicious arguments to existing library functions with 
disastrous consequences. For example, supplying “bin/sh” to the system() function will execute a 
shell and provide an attacker with full-featured access to the target host. 

The typical return-to-libc exploit is possible because an attacker is able to disrupt the 
intended control flow of the target program through manipulation of the return address (often 
through a buffer overflow vulnerability). 

Note that such an attack may be thwarted by the Address Space Randomization or Stack 
Space Randomization techniques. 

However, this style of attack critically depends on the attacker’s knowledge of the calling 
convention. Calling Sequence Diversity provides a secure calling convention that prevents 
unauthorized invocation of potentially malicious functions. Our approach to developing such a 
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calling convent was to require a hidden parameter that was checked by the called function. Since 
attackers do not know the value of this parameter, they cannot execute the function successfully. 

Strata was used to automatically and dynamically insert and check this random key to thwart 
return-to-libc attacks. For more details, refer to Appendix B, which incorporates a writeup of this 
technique.  
2.5  Genesis Diversity Toolkit (GDT) Evaluation 

This section presents an overview of the security and performance evaluation of the 
Genesis toolkit. 
2.5.1 Security Evaluation 
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To analyze and demonstrate the strength and soundness of Genesis, we performed 
several experiments in which we ran applications with known-vulnerabilities under 
control of Genesis. We then ran the associated exploits on hundreds of variants 
generated by the GDT. Example vulnerabilities included buffer overflows and format 
string vulnerabilities targeted towards both the heap and stack. The success rate for ISR 
(for code-injection attacks) and for Calling Sequence Diversity (for return-to-libc 

Figure 3. Sample Genesis Fault Tree 
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attacks) were both 100%. We also seeded applications with our own vulnerabilities, 
developed associated attacks and achieved the same success rate.  

However, these experiments represented only point samples in the space of attack 
implementations. To argue for the soundness and broad applicability of our techniques, 
we developed a fault-tree to enable a comprehensive analysis of the Genesis design and 
implementation. This process uncovered a few omissions that we fixed and fed back 
into the implementation of the system.  

The top level of the fault tree is shown in Figure 3. The top node identifies the goal 
state, namely that attack code was successfully injected and executed by the Strata 
virtual machine. The tree refines this hazardous states using AND and OR gates and 
details the necessary conditions required to reach this goal state. By systematically 
identifying goals and subgoals, and by stating any required assumptions, the fault tree 
provides a formal method of communications by which to evaluate the system design.  

In addition to our own evaluation, we participated in two independent red team 
exercises commissioned by our DARPA program manager. The first red team exercise 
evaluated the strength of the GDT using the threat model of a remote attacker. We 
provided the red team with vulnerable applications and associated exploits which they 
used as a starting point for the exercise. The red team was unable to exploit applications 
running under the GDT. However, due to resource constraints, this exercise was limited 
in scope.  

Thus, we undertook a second red team evaluation in which the scope of the exercise 
was expanded dramatically to encompass not just applications but also the virtual 
machine used as part of the GDT. In addition we provided the red team with our fault 
tree and associated analyses (Figure 3, Appendix C). The main idea behind this second 
exercise was to emulate a sophisticated insider as an attacker, i.e., what if one of the 
developer of the system was part of the attacking team? 

Overall, this second exercise resulted in a blue team (Genesis) victory and validated 
the basic soundness of our design and implementation. However, we note that both 
exercises were limited in scope and duration. A more thorough red team evaluation 
would be needed prior to large-scale deployments on a DoD system. Reports for both 
red team exercises are available through the program manager.   
2.5.2 Performance Evaluation 

Overall, the implementation of the Instruction Set Randomization and Calling Sequence 
Diversity techniques did not add much overhead to the baseline case of running applications 
under the Strata Virtual Machine. At first glance, this result may appear counter-intuitive in light 
of the fact that ISR uses the AES algorithm and that other implementations of ISR used a very 
simple XOR encoding scheme because of performance consideration [Kc03, Barrantes05]. The 
use of aggressive caching techniques in the Strata virtual machine enabled efficient 
implementations of diversity transformations since even relatively heavyweight operations such 
as AES decryption were only performed once for a given code fragment throughout the 
execution of a program. Thus as the working set of the program materialized in Strata’s code 
fragment cache, little additional overhead is incurred as the program code executed natively.  
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Thus the incorporation of diversity techniques and other security measures were to a first-order 
approximation essentially free: the efficiency of diversity transformation techniques essentially 
depends on the efficiency of the Strata virtual machine. As shown in Figure 4 for the SPEC 
benchmark, there was little difference between the two scenarios. 

The implication is that as virtual machine technology continues to mature and becomes more 
efficient, diversity-based techniques will become even more practical. For example, during the 
period of this award, Strata performance improved from 30-40% average overhead to under 10% 
for applications such as Apache and BIND. 

 
 
 

Figure 6. Bind Overhead Normalized to Native 
Execution. Metric: queries/sec 

Figure 4. Strata and Strata+ISR Overhead Normalized to Native Execution (SPEC) 

Figure 5. Apache Overhead Normalized to Native 
Execution. Metric: client request/sec 
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In terms of absolute performance relative to native execution, we achieved average overhead 
of 17% on the SPEC benchmark (Figure 4), less than 5% running the Apache web server (Figure 
5), and between 5-11% on the BIND server (Figure 6).  

We also measured the overhead on a commercially available GSM software-defined 
radio (SDR) package. The primary metric was a Quality-of-Service (QoS) 
measurements of the ability to sustain 100 concurrent call sessions for a protocol 
converter application within the SDR package. The Strata-based version saturated the 
CPU at 100 concurrent calls. After 100 calls, there could be a loss of fidelity because 
less signal data is being communicated per channel. In discussion with the engineers of 
the system, 100 calls was well within the acceptable range of operation and in fact 
represented a high testing watermark (i.e., in actual deployments, they did not expect to 
reach this level). 

10 25 50 100
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Native
Strata
Strata/ISR

Number of Concurrent Calls

%
 C

P
U

 U
til

iz
at

io
n

 
On a micro-benchmark stress test we achieved 85% overhead. While this result seems high, 

we note that this was a stress test that ran at faster than real-time in the sense that the processing 
speed was higher than the input sampling rate of the audio stream. We would need to measure 
macro-benchmark application-level overheads to determine the real-world performance 
implication of our approach. 

The use of Strata (and in fact, of virtual machine technology in general) in soft-real time 
applications is a relatively uncharted area. Our preliminary results gave us confidence that with 
further performance optimizations, we could reduce the CPU load and performance overheads 
further. 
2.6  Genesis Toolkit Enhancements 

In the last phase of the project we worked towards improving the maturity and 
stability of the Genesis toolkit. This was necessary to pave the way for an eventual tech 
transfer to potential partners and for enabling the evaluation of the toolkit on real-world 
commercial applications. Improvements made to the GDT are described below: 

• Support for the Debian GNU/Linux operating system: Genesis was developed 
on a variety of standard UNIX platforms, but had not been tested under this 
environment. Minimal work was required to port the Genesis toolkit to Debian as 
previous work had been tested under Red Hat Linux.  

• Robust support for C++:  The Genesis toolkit was originally implemented to 
support the C programming language. Because the C and C++ run-time 
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initialization takes place before the main() function is entered, we moved the 
transfer of control to Strata to the very beginning of the process execution by 
effectively prepending a few Assembly call instructions to the executable. This 
put the global constructors and destructors under the control of Strata. Not a 
single application instruction is executed outside the control of the Strata VM as 
of this change.  

• Robust support for multi-threaded software: While Strata did already support 
threaded applications, a number of previously esoteric bugs were brought to light. 
Running the pthreads unit tests for the GNU libc implementation no longer breaks 
any previously working test cases. 

• Improved engineering procedures and documentation: A large number of tests 
were added to the engineering process.  A number of third party tests have been 
adopted, e.g. GNU libc unit tests, Linux threads unit tests, gzip package self tests. 

• Independence from the C library: To support immediate control of the hosted 
application by Strata, we needed to remove all dependencies upon code in the 
standard C library.  This allowed us to stop linking in a second copy of libc to 
avoid sharing code at runtime between Strata and the hosted application. A total 
of 48 functions were reimplemented in a stand-alone library.  Of these only 18 
were OS system calls. As a side effect of this change, the increase in the 
application size as a result of embedding it in Strata was reduced by 44%. 

• New logging infrastructure: A great deal of refactoring was done to create a 
consistent logging facility.  This was necessary to reduce the dependencies upon 
the C library before implementing the stand-alone library replacements. Logging 
was split into two parts: Strata logs binary data to a persistent store and a log 
viewing client is used to render the log messages into human readable text. 

• Build Process Integration: We modified the default configuration of the gcc 
compiler such that a minimal number of options, often zero, were needed.  As a 
result the GDT tool chain can now be used to compile applications with little 
modification of the sources. 

Additional information about this phase of the project is available upon request. It was not 
included in this report because of confidentiality agreements. 
2.7  Recommended Configuration 

The recommended configuration for the Genesis Diversity Toolkit depends on the 
threat model assumed. Since code-injection attacks still predominate today, and will 
likely continue do to so for the foreseeable future, we recommend the use of ISR to 
protect networked applications. If more security is desired then all the other diversity 
transformations of the Genesis toolkit could be combined. 

If the threat model is that of exploitable vulnerabilities coupled with concerns about 
code integrity, unauthorized copying and execution of applications, or reverse 
engineering, then we recommend the static version of ISR in which binaries are 
statically encrypted and decrypted only as the program executes. However, this 
configuration option has wide ramifications for the deployment and maintenance 
lifecycle of an application. Instead of producing a single image of an application and 
distributing identical copies, this option would require the production at the factory of n 
program variants, each with its own randomization key.  
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3 Summary of Results 
In this section, we present a summary of the results obtained by the Genesis team. 

3.1  Security Benefits of Genesis 
Using the Genesis Diversity Toolkit (GDT), C and C++ applications were protected against 

code-injection and several forms of arc-injection attacks, including return-to-libc style attacks. 
Code-injection attacks represented (and still represent) a large and important attack class that 
afflicted popular Internet-enabled software applications such as Web, database, and domain 
name resolution servers.  

Unlike previous diversity-based approaches, the GDT provided techniques that: (1) protected 
against all code-injection attacks regardless of the exploit path through a program, (2) did not 
rely on probabilistic guarantees for attack detection, and (3) used strong cryptographic protocols 
such as the Advanced Encryption Standard (AES). 

Instead of targeting specific types of vulnerabilities, e.g., format strings, buffer overflows 
etc…, the GDT provided broad protection against both known and unknown code-injection 
attacks. In addition, the GDT also provided protection against return-to-libc attacks, though these 
were and still are not nearly as prevalent as code-injection attacks. 

The GDT was evaluated by two independent red teams. These exercises were conducted 
under relatively tight budgetary and time constraints. Thus, while both exercises validated the 
soundness of our approach—the red teams were unable to penetrate our defenses or find major 
flaws with our system design—more thorough investigation would be required prior to large-
scale deployment. 
3.2  Genesis Diversity Toolkit Status 

The GDT supported C and C++ programs running on the Red hat Linux 7.x and Fedora Core, 
and Debian 3.x operating systems. The GDT was evaluated on several real-world and relatively 
large applications, including the Apache web server, the BIND name resolution server, and a 
proprietary software-defined radio application, in addition to SPEC benchmarks. We achieved 
average overheads of 17% on the SPEC2000 benchmark, 5%-10% on BIND, less than 5% on 
Apache. For a commercial soft real-time application, we were able to meet QoS requirements 
though at an increased CPU level. Preliminary performance data on a micro-benchmark stress-
test yielded overhead of 85%. Further research and optimizations would be warranted for soft-
real time applications in general, though early results were encouraging. 
3.3  Patent Applications 

The University of Virginia Patent Office filed for a patent application to cover the 
technological foundation underlying the Genesis toolkit in July 2006. This technology was 
licensed by a subsidiary of UTEK Corporation, a specialty finance company focused on 
technology transfer (http://www.utekcorp.com/).   

We note that the patent application was broader than just protection against code-injection 
attacks and covered the execution of encrypted and encoded applications using virtual machine 
technology. As discussed in Section 5.1  and in Appendix D, the technology developed has 
applications to the field of anti-tampering, which is particularly well-suited to DoD military 
systems. 
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3.4  Technology Transfer 
In addition to the license agreement described above, we have ongoing relationships with 

several companies, including large defense contractors and smaller players in the defense arena, 
to explore venues for continuing the development of the Genesis toolkit and for transitioning the 
technology to wider use. The GDT has reached a maturity level that makes it practical to 
evaluate its effectiveness on real-world military applications. 
3.5  Other Results 

The Genesis project has led to the establishment of several related research projects: 
PhPrevent and Secretless Structures for Security (SSS). The former provided protection for web 
applications against such attacks as SQL injection, Cross-site scripting (XSS), and Script 
injections attacks. The latter sought to provide provable security guarantees against classes of 
attacks and was a direct extension of the diversity work funded by this project. Its notable feature 
was that by judiciously using diversity techniques, security could be provided without relying on 
any secrets such as randomization or cryptographic keys. This project is now funded by the 
National Science Foundation under the CyberTrust program. 
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4 List of Major Publications  
The following list itemizes the major publications during the contract period, including a 

patent application that covered the execution of encrypted binaries using a virtual machine 
approach: 

Method for Software Protection Using Binary Encoding. Wei Hu, Jason Hiser, Dan 
Williams, Adrian Filipi, Jack W. Davidson, David Evans,John C. Knight, Anh Nguyen-Tuong, 
Jonathan Rowanhill, Adrian Filipi. Patent Application filed by the University of Virginia Patent 
Foundation in July 2006. [Proprietary information not included in report. Available upon request 
by DoD personnel]. 

Secure and Practical Defense Against Code-injection Attacks using Software Dynamic 
Translation. Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David 
Evans,John C. Knight, Anh Nguyen-Tuong, Jonathan Rowanhill. 2nd Virtual Execution 
Environments Conference, Ottawa, Canada, June 2006. [Appendix A: Instruction Set 
Randomization]. 

Where's the FEEB?: The Effectiveness of Instruction Set Randomization. Ana Nora Sovarel, 
David Evans and Nathanael Paul. 14th USENIX Security Symposium. Baltimore, MD. August 
2005. [Appendix G: Derandomizing Attacks]. 

Automatically Hardening Web Applications Using Precise Tainting. Anh Nguyen-Tuong, 
Salvatore Guarnieri, Doug Greene, Jeff Shirley, David Evans. Twentieth IFIP International 
Information Security Conference (SEC 2005). 30 May - 1 June 2005, Chiba, Japan. [Appendix F: 
PHPrevent – Web Application Security]. 

4.1  Website 
Presentations, papers and summaries are available through our various web sites. An 

overview of Genesis is available at http://www.cs.virginia.edu/genesis; an overview of the web 
application security project is available at: http://www.phprevent.org; an overview of  the 
Secretless Security project is available at http://www.nvariant.org; and finally an overview of 
related projects can be found at http://dependability.cs.virginia.edu. 
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5 Technology Transfer & Future Opportunities 
Large-scale experimental evaluation and validation of the Genesis toolkit on actual 

or next-generation DoD systems represent our logical next steps given the maturity of 
the Genesis Diversity Toolkit. We have discussed this possibility with the Navy, with 
several companies and with a large defense contractor. So far, we have not secured 
commitments to undertake an expanded evaluation project, but are continuing 
discussions with interested parties.  

Through the University of Virginia Patent Foundation, we have licensed the 
technology described in our patent application to a subsidiary of Utek Corporation. The 
UVA Patent Foundation is actively seeking further licensees. 
5.1  Anti-Tampering Applications 

Anti-Tampering is an area of high interest to DoD, especially for systems that are 
susceptible to capture by enemy forces or systems used by allies for which DoD seeks 
to protect its intellectual property. In Appendix D: Tamper Proofing, we provide a 
summary of Anti-Tampering using the Genesis toolkit, for providing protection against 
the unauthorized modification of software, against reverse engineering of software, and 
against piracy, i.e., running software on a different target host than was intended.  
5.2  Recovery 

Most diversity-based defense techniques are only able to detect and stop attacks. 
While this is a significant first-step in building self-regenerative systems, further 
research is needed in building software systems that can self-heal when faced with 
attacks. 

A primary and critical characteristic of our Strata-based implementation of ISR was 
that instead of crashing a process like other diversity-based techniques, we actually 
maintained control of the application when attack code was executed. Furthermore, we 
could identify the attack code precisely. Thus, while our default policy is to exit a 
program upon detection of an attack, the use of the Strata virtual machine opens the 
door for more sophisticated policies that can analyze the captured code and effect repair 
and recovery actions in situ. These repairs could prevent further similar attacks from 
affecting the running program, thereby potentially increasing the availability of 
mission-critical information systems. 
5.3  Finer-grained Diversity 

To reduce potential windows of vulnerability to a finite user-controlled time bound, 
we would like to investigate the use of our virtual machine technology to re-diversify 
applications dynamically (temporal diversity) while they are executing, without having 
to restart applications, and with little impact on performance. A simple and relatively 
easy to implement policy would be easy to dynamically change the AES key used in our 
ISR implementation. Preliminary results indicate that flushing the instruction fragment 
cache periodically on the order of seconds incurs acceptable overhead. Additional 
policies to obfuscate or diversity the application code would result in a program that 
presented a fast and dynamically shifting attack surface to attackers. 
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6 Conclusion 
The Genesis team has developed novel techniques for defending against large 

classes of attacks, including return-to-libc and code-injection attacks, and incorporated 
these techniques into the Genesis Diversity Tookit (GDT). The GDT was developed to a 
maturity level sufficient for protecting real-world C and C++ applications. We have 
validated the soundness of our virtual-machine based approach and architecture through 
both experimental evaluation and red team exercises. We have demonstrated the 
practical benefits of our approach, with only minor performance overheads on several 
real-world applications of interest to the DoD. We have also demonstrated the GDT on 
soft real-time applications, using software-defined radio as our target application. We 
feel that the GDT is now ready for evaluation on further DoD systems. Furthermore, we 
have identified several promising areas for future research, notably in the field of anti-
tampering for critical military systems.  
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Abstract 

One of the most common forms of security attacks involves exploiting a vulnerability to inject malicious 
code into an executing application and then cause the injected code to be executed. A theoretically strong 
approach to defending against any type of code-injection attack is to create and use a process-specific 
instruction set that is created by a randomization algorithm. Code injected by an attacker who does not 
know the randomization key will be invalid for the randomized processor effectively thwarting the attack. 
This paper describes a secure and efficient implementation of instruction-set randomization (ISR) using 
software dynamic translation. The paper makes three contributions beyond previous work on ISR. First, 
we describe an implementation that uses a strong randomization algorithm—the Advanced Encryption 
Standard (AES). AES is generally believed to be imprevious to known attack methodologies. Second, we 
demonstrate that ISR using AES can be implemented practically and efficiently (considering both 
execution time and code size overheads) without requiring special hardware support. The third 
contribution is that our approach detects malicious code before it is executed. Previous approaches relied 
on probabilistic arguments that execution of non-randomized foreign code would eventually cause a fault 
or runtime exception. 

1. Introduction 
Despite heightened awareness of security concerns, security incidents continue to occur at alarming rates. 
In 2004, the Department of Homeland Security reported 323 buffer overflow vulnerabilities—an average 
of 27 new instances per month [13]. The most common attack to exploit buffer overflow vulnerability is a 
code-injection attack. In a code-injection attack, an attacker exploits the buffer overflow vulnerability to 
inject malicious code into a running application and then cause the injected code to be executed. The 
execution of the malicious code allows the attacker to gain the privileges of the executing program. In the 
case of programs that communicate over the network, such attacks can be used to break into host systems. 

A theoretically strong approach to defending against any type of code-injection attack is to create and use 
a process-specific instruction set that is created by a randomization algorithm. Code injected by an 
attacker who does not know the randomization key will be invalid for the randomized processor thereby 
thwarting the attack. Such an approach is known as randomized instruction-set emulation (RISE) or 
instruction-set randomization (ISR) [2, 9]. In this paper, we will use the term ISR exclusively. 

The basic operation of an ISR system is as follows. An encryption algorithm (typically XOR’ing the 
instruction with a key) is applied statically to an application binary to encrypt the instructions. The 
encrypted application is executed by an augmented emulator (e.g., Valgrind [17] or Bochs [14]. The 
emulator is augmented to decrypt the application’s instructions before they are executed. 
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When an attacker exploits a vulnerability to inject code, the injected code is also decrypted before 
emulation. Unless the attacker knows the encryption key/process, the resulting code will be transformed 
into, in essence, a random stream of bytes that, when executed, will raise an exception (e.g., invalid 
opcode, illegal address, etc.). 

The security of ISR depends on several key factors: the strength of the encryption process, protection of 
the encryption key, the security of the underlying execution process, and that the decrypted code will, 
when executed, raise an exception. The practicality of the approach is affected by the overheads in 
execution time and space introduced by the encryption and decryption process. This paper describes an 
implementation of ISR that addresses both the security and practicality issues. 

The implementation is secure. It uses the Advanced Encryption Standard (AES) to perform the encryption 
process. AES has been approved by the United States government to protect classified information at the 
SECRET level with a 128-bit key and at the TOP SECRET level with either a 192- or 256-bit key [24]. 
Furthermore, the approach does not require storage of the encryption key on the disk. The key is 
generated dynamically when the program is loaded. A further benefit is that each execution of an 
application uses a different key. The underlying execution process is provided by a small, robust virtual 
execution environment. Finally, the approach does not rely on the generation of an exception or fault by 
the execution of randomized code. Injected code is detected before it is readied for execution. 

Extensive testing of our approach (including an attack exercise carried out by third-party security experts 
on an Apache web server that had been seeded with vulnerabilities) revealed no security breaches. 

The implementation is practical. Rather than use emulation or postulating hardware extensions, we use a 
robust, efficient software dynamic translation (SDT) system [21]. Performance measurements using a 
variety of benchmarks including the full SPEC CPU2000 suite, a domain name server, and a web server, 
showed the runtime overhead of SDT-based ISR to be modest—16% for SPEC CPU2000, 6–10% for the 
domain server, and no overhead for the web server. Space overhead of SDT-based ISR is also 
reasonable—the text size of a protected web server was 53% larger than an unprotected web server. 
However, the working set size of the two implementations were similar. More detailed measurements of 
the overheads of ISR are reported in Performance Evaluation. 

The remainder of this paper is organized as follows. Threat Model describes the class of attacks that ISR 
handles. Previous work on ISR is described in Previous Work. Secure and Practical ISR describes our 
SDT-based implementation of ISR. An evaluation of the security and performance of our approach is 
given in Evaluation. Related Work gives an overview of related work, and Summary concludes the 
paper. 

2. Threat Model 
The threat model addressed by our infrastructure is application-level binary code injection into an 
executing program. Attackers exploit some vulnerability in the target program, inject malicious code, and 
alter program control to execute the malicious code. The model handles all currently identified 
mechanisms for injecting foreign code into an application (e.g., buffer overflow [19, 13], format string 
attacks [6], and malloc/free errors [7]). Collectively, these attacks account for over 50% of the CERT 
advisories issued in the years 1999–2002. Because the approach is independent of the mechanism used to 
inject code, it can protect against nascent injection mechanisms. 

While the threat model covers a wide range of known attacks, there are several that are not covered. The 
model does not cover arc-injection attacks (also known as return-to-libc) [18], or attacks that modify data 
locations (e.g., a critical data value) [5]. Furthermore, the model assumes that the operating system is 
secure and that the application image on disk cannot be modified by the attacker. 
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3. Previous Work 
Using randomization to create an instruction set that is unique to the running process so that an attacker 
cannot create a payload which can be injected into the application and execute properly was 
independently developed by groups at the University of New Mexico [3] and Columbia University [9]. 
Both groups implemented ISR prototypes for the x86 using emulation (Valgrind in the case of New 
Mexico and Bochs at Columbia). 

One of the major differences in the two approaches is how the application code is randomized. Both 
groups used the XOR operation to produce the randomized binary. The Columbia implementation used a 
32-bit key applied to 32-bit blocks containing the instruction or instruction fragment (many x86 
instructions are longer than four bytes). The New Mexico implementation used a one-time pad that is the 
length of the program. The bytes of the one-time pad are XORed with individual bytes of the original 
application program to create the randomized program. Unfortunately, encryption techniques that use 
XOR are susceptible to attack. Indeed, it was demonstrated that the New Mexico approach can be cracked 
with modest effort [23]. It is also important to note that the use of a one-time pad the length of program 
effectively doubles the program size. For some applications, a doubling of code size could be 
problematic. 

Because both techniques used emulation, the overhead of decryption and execution was quite high. On 
CPU-bound benchmarks, the Columbia group reported runtime overhead as high as 25 times native 
execution speed. On I/O-intensive programs such as ftp, the overhead was 1.34x. Based on their results, 
the Columbia group concluded that ISR would only be feasible with special hardware support. 

The New Mexico group carefully benchmarked a single program, Apache, and the trend of their results 
were similar to Columbia’s results—I/O-bound programs incur less overhead [2]. When serving many 
small pages (less than 1KB in size), the runtime overhead was high—2.88x. When serving larger pages 
(100 KB in size), the runtime overhead was 1.05x. The New Mexico group noted that a software dynamic 
translator might make ISR practical. 

Both techniques assumed that the execution of decrypted payloads would eventually cause an exception 
to occur. Barrantes et al. performed a theoretical analysis of the probability that execution of a sequence 
of random code will escape [2]. The analysis showed that independent of the exploit or process size, there 
will always be a nonzero probability that the code will escape. 

4. Secure and Practical ISR 

4.1 Overview 
To address the security and performance overheads of the preliminary implementations of ISR, we 
employ a combination of binary rewriting and software dynamic translation. We use an efficient software 
dynamic translation system to provide the necessary virtual execution environment for safe execution. 
The SDT system loads and encrypts the application, decrypts the application instructions in preparation 
for execution, and checks that the decrypted instructions are valid application instructions prior to 
execution. Binary rewriting is used to prepare the binary for strong encryption and introduce the 
information necessary to detect foreign code before it is executed.  

The following subsections describe these two components in more detail. We begin with the virtual 
execution environment because its operation motivates the necessary transformations performed by the 
binary rewriter. 
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4.2 Virtual Execution Environment 
We use Strata to provide the virtual execution environment for support of ISR. Strata is a retargetable 
software dynamic translation infrastructure designed to support experimentation with novel applications 
of SDT. Strata has been used for a variety of applications including system call monitoring [20], profiling 
[12], and code compression [22]. The following paragraphs provide a brief introduction Strata’s 
operation. 

Strata dynamically loads an application and mediates application execution by examining and translating 
an application’s instructions before they execute on the host CPU (see Strata virtual machine virtualizing 
an application.). Strata essentially operates as a co-routine with the application that it is protecting. 
Translated application instructions are held in a Strata-managed cache called the fragment cache. The 
Strata virtual machine (VM) is first entered by capturing and saving the application context (e.g., program 
counter (PC), condition codes, registers, etc.). Following context capture, Strata processes the next 
application instruction. If a translation for this instruction has been cached, a context switch restores the 
application context and begins executing cached translated instructions on the host CPU. 

If there is no cached translation for the next application instruction, the Strata VM allocates storage for a 
new fragment of translated instructions. The Strata VM then populates the fragment by fetching, 
decoding, and translating application instructions one-by-one until an end-of-fragment condition is met. 
The end-of-fragment condition is dependent on the particular software dynamic translation client being 
implemented. As the application executes under Strata control, more and more of the application’s 
working set of instructions materialize in the fragment cache.   

Fragment Cache
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Figure 1: Strata virtual machine virtualizing an application. 
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The implementation of ISR required two simple extensions to Strata. First, we introduced an encryption 
feature that applies AES to the application text before Strata begins execution of the application. Second, 
we overrode Strata’s default fetch mechanism. The new fetch method decrypts and verifies an instruction 
before calling the default target-machine fetch method.   

Runtime decryption and verification. gives the basic steps Strata carries out to implement ISR. In Step 1, 
Strata’s security API is used to intercept all system calls to mprotect and sigaction. This is done to prevent 
an application from inadvertently disabling write protection of the text segment or the fragment cache. In 
particular, we are concerned with preventing attacks that are intended to corrupt Strata’s code since it runs 
in the same address space as the application. 

Step 2 encrypts the binary. The binary rewriting process created and embedded in the application text a 
table, called the encrypttable, that specifies the blocks of the application text that should be encrypted. 
The binary rewriter also modifies the application text so that the start of each block is aligned on a 128-bit 
address boundary. Strata uses the mprotect system call to enable modification of the text segment. Using 
the information in the encrypttable and a 128-bit key obtained from the pseudo-device /dev/urandom, 
Strata encrypts the application text. The text segment is then write protected. 

Step 3 describes the modification necessary to decrypt and verify application instructions. The new fetch 
method loads two 128-bit blocks into a decoding buffer. It fetches the block that contains the first byte of 
the instruction pointed to by the PC and the following 128-bit block. Both blocks are then decrypted. 
Fetching two consecutive 128-bit blocks guarantees that the complete instruction is fetched and decrypted 
even if the instruction starts on the last byte of the first 128-bit block (the maximum length of an x86 
instruction is 15 bytes). 

To illustrate the process, suppose the PC points to a ten-byte instruction that begins at memory location 
0x1017B3D. The decryption engine fetches and decrypts the 128-bit blocks at addresses 0x1017B30 and 
0x107B40. The following is a schematic of the decoding buffer after the fetches.  

 
The shaded portion indicates the bytes of the buffer that contain the ten-byte instruction. 

As part of the binary rewriting process (see Binary Preprocessing), each instruction is tagged with a 
simple eight-bit MAC (message authentication code). After decrypting the two blocks, Strata checks the 
MAC to ensure that the fetched bytes represent a valid application instruction. If the MAC is valid, Strata 
simply invokes the default fetch method with the PC pointing at the first byte of the instruction.  
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1. Initialize the system call watch table. 
2. Encrypt the application. 

a. Obtain a 128-bit encryption key from the pseudo-
device /dev/urandom. 

b. Use the mprotect system call set write permission 
for the text segment. 

c. Use the table of address ranges created by the 
binary rewriter and the key to encrypt the 
application’s text. 

d. Write protect the text segment. 
3. Fetch the next instruction. 

a. Fetch the 128-bit aligned block that contains 
instruction pointed to by current application PC. 
Also fetch the next 128-bit aligned block 

b. Decrypt the two 128-bit blocks. 
c. Check that the instruction tag is correct. If the tag 

is incorrect, report an error and dump the current 
PC and the plain-text instructions located there. 

d. If the tag is correct, call the default target-machine 
fetch function to retrieve the next instruction. 

e. The decoding and translation steps proceed as 
normal. 

Figure 2: Runtime decryption and verification. 

 

The use of an eight-bit MAC means that there is a 1 in 256 chance that the MAC is coincidentally correct. 
However, in order for Strata to execute the fragment containing the injected code, the MAC for each 
instruction in the fragment must be correct. Thus for a fragment containing four instructions, the 
probabilty that four individual MAC would be coincidently correct is 2-32. However, with no penalty in 
runtime, the size of the MAC could easily be increased. 

If the MAC is invalid, the first stage of a code injection attack is underway—a vulnerability has been 
exploited to inject code and control flow has been diverted in an attempt to execute the malicious code. 
When an invalid MAC is detected, Strata reports the violation, and dumps the current program counter 
and the undecrypted code pointed to by the program counter (i.e., the malicious payload). This 
information can be used for offline forensic analysis. 

It is important to note that the process of decrypting the application text, checking the MAC, and building 
a specific fragment generally only occurs once. Thus, the performance overhead of SDT-based 
implementation of ISR is closely related to the basic overhead of software dynamic translation. 
Performance Evaluation provides detailed measurements of the overheads of our SDT-based 
implementation of ISR.    
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Figure 3: Work flow of the binary rewriter Diablo. 

There are a few other details that deserve discussion. Strata controls access to the fragment cache using 
the mprotect system call. During application execution, the fragment cache is write protected. The 
decryption key is also maintained in a memory region not accessible to the application. On a context-
switch from the application back into Strata, Strata makes the fragment cache writeable so that it may 
create new fragments or perform updates of existing fragments. It also makes the location containing the 
decryption key readable. Before the context switch back to the application occurs, Strata reprotects the 
fragment cache and the encryption key.  

Our current implementation of ISR does not support applications that employ legitimate uses of self-
modifying code. We do not view this as a serious limitation. None of the critical applications that we have 
examined employed self-modifying code. Nonetheless, we plan to investigate techniques for safely 
handling legitimate uses of self-modifying code.  

4.3 Binary Preprocessing 

To prepare the binary for encryption using AES and to introduce the necessary MACs, we modified 
Diablo, an existing binary rewriting tool [4]. Work flow of the binary rewriter Diablo. illustrates the basic 
workflow of Diablo.  

Diablo reads all object files and libraries constituting an application, the linked application, and the map 
file generated by the normal linker.  In phase 1, Diablo uses this information to replay the linking process 
of the normal linker.  In phase 2, Diablo dissects and translates the program into an internal 
representation.  In phase 3, Diablo disassembles the instructions and builds a control flow graph (CFG). 
Phase 4 then applies various analysis and optimization techniques to the CFG (e.g., useless code 
elimination, architecture-dependent peephole optimizations, etc.). After completion of phase 4, phase 5 
flattens the CFG into a linear representation and phase 6 produces target-machine instructions.  In the 
final step, the binary writer emits the modified executable. 
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The shaded blocks in Work flow of the binary rewriter Diablo. are the Diablo modules that required 
extension to produce a binary with the transformations and informations needed to support ISR.  The 
extensions to each phase are outlined in Diablo extensions to support ISR..      

1. Flattener 
For each basic block do: 
a. Determine the source of the basic block. If the basic block is application code, mark the basic block 

for encryption. Otherwise do not mark the block for encryption. 
b. If the block is marked for encryption, reserve one byte before each instruction for a MAC. 
c. Recalculate the offsets among basic blocks and update all instructions affected. 
d. Maintain a record of each block that should be encrypted. 

2. Assembler 
For each basic block do: 
a. Determine the source of the basic block. 
b. If the basic block is application code and instruction tagging is enabled, insert a MAC in the each 

instruction in the block. 
c. If the basic block is application code and instruction tagging is disabled, insert an NOP in the space 

reserved for the MAC. 
3. Writer 

a. Create a new section, encrypttable, to contain the information about the text blocks to encrypt at load 
time. 

b. Set up the ELF executable and output the binary (the text segment, the data segment, the encrypttable 
segment, and any other segments). 

Figure 4: Diablo extensions to support ISR. 

 

Phase 5, the Flattener, assigns a linear order to the CFG and updates the offsets in control transfer 
instructions according to that order. We added a function AlignBlock that is invoked after the linear order 
is assigned, but before offsets are updated. This function processes each basic block. If the block is 
application code, AlignBlock reserves space for a MAC before each instruction. It then aligns the block 
appropriately by padding the beginning of the block with NOPs (these NOPs are elided by Strata during 
its translation process).  

Not every basic block needs alignment. If the previous block was aligned and the following basic block is 
part of the application text, it can be grouped with the previous basic block. After all blocks are 
processed, the Flattener recalculates branch offsets and updates all instructions affected. The starting 
address and length of each block that should be encrypted is collected so this information can included in 
the modified binary emitted by the Writer.   

Phase 6, the Assembler, is modified to fill the placeholder preceding each instruction with a MAC if 
instruction tagging is enabled, or with a NOP if instruction tagging is disabled. Again, Strata’s translation 
process elides NOPs.   

The final phase of Diablo emits the modified binary to disk. This phase of Diablo was extended to create 
a new segment, .encrypttable, to contain the encryption information that Strata uses to initially encrypt the 
application text.   

5. Evaluation 
With any system designed to protect software against malicious exploitation of vulnerabilities, there are 
tradeoffs in terms of performance and the level of security provided. In this section, we evaluate the 
security and performance of SDT-based ISR. 
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5.1 Security Evaluation 
As previously described, our implementation uses AES to encrypt the application text using a key that is 
generated at runtime. It is generally believed that AES is secure.  

When encryption is used to protect a system, an important issue is management of the encryption key. 
Where is the key stored? How is the key protected? How long is the key valid? Our approach addresses 
these issues. The encryption key is never stored on disk, the key is maintained in a protected region of 
memory only accessible by Strata, and a new key is generated for each execution of the application. 

To evaluate the security of SDT-based ISR, we seeded published vulnerabilities into several real 
applications and then exploited the vulnerability to effect a code-injection attack. Table I lists the 
applications, the type of vulnerability, and the target memory region of the injected code. For each 
vulnerability, we demonstrated that exploitation of the vulnerability could be used to compromise an 
unprotected system. In all cases, ISR was able to detect the attempt to execute injected code and prevent 
the attack from proceeding. 

Our protected version of Apache was also subjected to attack by a security team consisting of several 
security experts. All algorithms, source code, and design documents were provided to the security team 
for analysis in advance of the exercise. The target system was seeded with several known vulnerabilities 
and subjected to concerted code-injection attacks. The system was able to stop all attacks.  

Application Vulnerability Location of injected code 

Apache Buffer overflow Stack 

Apache Format string Heap/Stack 

Samba Buffer overflow Stack 

Bind Format tring Heap/Stack 

rpc.statd Format string Global offset table 

cvs server double free Stack 

Table 1: Tested applications. 

5.2 Performance Evaluation 
A major concern raised by initial implementations of ISR was the high runtime overheads incurred. To 
evaluate the runtime overhead of SDT-based ISR, we measured the performance of a variety of 
benchmarks. In all measurements, the performance measures are normalized to native execution—the 
application running directly on the hardware. 

All measurements reported in this section were taken on a 2.8GHz P4 Xeon with 512MB of RAM. 
Hyperthreading was enabled. The installed operating system was RedHat 8.0. In the case of the 
client/server applications, Apache and Bind, client processes were run on separate, but identical machines. 

SDT overhead and SDT-ISR overhead normalized to native execution. Metric: SPEC ratio. shows the 
performance results for SPEC CPU2000. We measured the overhead of the baseline SDT system (no 
ISR), and the overhead of the SDT-based ISR system. The performance metric used to compute the 
overhead was the reportable SPEC ratio produced by the SPEC measurement infrastructure.  
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Figure 5: SDT overhead and SDT-ISR overhead normalized to native execution. Metric: SPEC ratio. 

  

The average overhead for SDT-based ISR is 1.17 while the overhead of the baseline SDT system is 1.16. 
This basic trend is seen for all the benchmarks—ISR incurs little or no additional overhead over a 
baseline SDT system.  

It is interesting to note that the high average is due to a few outliers—perlbmk, gap, and gcc. These 
benchmarks execute a high percentage of indirect control transfers which are problematic for SDT 
systems [15, 21]. 

We also measured the overhead of two applications that are representative of the types of programs that 
might be desirable to protect with ISR. One is Apache, the widely-used Web server. The other is Bind, a 
widely used domain name server. 

To measure Apache performance, we used flood, the web server performance measurement tool 
developed and supported by the Apache Software Foundation. Flood’s performance metric is number of 
client requests served per second. For the measurements reported here, flood was configured to spawn 
eight clients each requesting pages from the server. We confirmed that the server was saturated with 
requests.  

To determine if performance was sensitive to the size of the page served, we measured performance using 
a variety of page sizes. We also measured the performance when the web page served consisted of several 
components. In these instances, the sum of the components is reported. For example, the label “200KB 
Compound” indicates that the web page served consisted of several individual files and the sum of the 
sizes of the individual files was 200KB. Apach contains the results.    
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 As the chart shows, the overhead of running either the 
baseline SDT system or the SDT-ISR system is 
negligible. The performance is independent of the size 
of the web page being served or whether it is a single, 
flat file or a page consisting of several individual 
components. 

To measure the performance of the Berkeley Domain 
Name server, Bind, we created three representative zone 
files. Briefly, a zone file contains directory records for 
mapping names such as www.apache.org to an IP 
address, and for mapping an IP address to a name (a 
reverse lookup). We created zone files containing 1000 
records, 10,000 records, and 100,000 records to 

represent a small organization, a mid-size organization, and a large organization, respectively. Using 
queryperf, a DNS server performance testing tool, we measured the number of queries processed per 
second of Bind running under our SDT system with and without ISR enabled.  

The measurement results are presented in Bin. The overhead of querying the small and mid-size databases 
is about 10%, while the overhead for the larger database was 5%. Again, there was no statistically 
significant difference between the SDT-only system and the SDT-ISR system.   

We also measured the space overhead of SDT-based ISR. 
For Apache and Bind, the text size of the rewritten binary 
was 53 and 57 percent larger, respectively, than the text 
size of the corresponding native binaries. Most of this 
overhead was due to the one byte MAC inserted before 
each instruction. 

The encrypttable which was stored in a separate segment 
increased the size of the initialized data segments by 16% 
for Apache and 40% for Bind. The size of the 
encrypttable depends on the number of encryption 
blocks. For all performance experiments, the size of 
Strata’s fragment cache was fixed at 4MB. 

We also observed the working set size of the running 
applications. We saw no difference in the working set size between the SDT versions and the native 
versions. This is not surprising as Strata itself is small and only the code that is executed materializes in 
the fragment cache. 

While we believe that the size overheads are reasonable for server applications, for some environments 
reducing space overhead may be desirable. The size of the text segments could be substantially reduced 
by computing a MAC for a block of instructions rather than a one-byte MAC for every instruction. 

6. Related Work 
 

Code injection attacks represent a major threat to computer security, and as a result there is a large body 
of work describing various techniques for stopping attackers from running injected code. Many of these 
techniques focus on particular areas of memory that are often attacked, most often the stack. StackGuard 
[8] and PaX [25] are two popular example of such methods. 

Previous work involving software-base implementations of ISR is described in Previous Work. 
Milenkovic et al. propose a method of basic block signing, similar to ISR, but partially implemented in 

 

Figure 6: Apache overhead normalized to native 
execution. Metric: client requests served per second. 

 

Figure 7: Bind overhead normalized to native 
execution. Metric: queries per second. 
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hardware [16]. This system uses AES, which a hardware key to create a signature of each basic block to 
ensure that it has not been modified. Similarly Kirovski et al. created the "Secure Program Execution 
Framework" for the ARM instruction-set architecture [11]. This framework also creates hashes of groups 
of instructions, which are checked in hardware before the instructions are allowed to execute. However, 
the system constructs the hashes in such a way that instruction rescheduling and basic block reordering, 
and register permutations could still be performed.  

Software dynamic translators have also been used for other security systems, mainly in policy 
enforcement. Strata has been used to enforce security policies [20]. Here Strata provides an API to watch 
sensitive system calls and function calls, and alter them or prevent them if they behave outside the 
implemented policy.  

DynamoRIO is used as the base for program shepherding [10]. Program shepherding restricts program 
execution based on a number of policies like disallowing modified code and restricting targets of branch 
instructions. Similarly, Abadi et al. propose restrictions on control flow using static binary rewriting [1]. 
This system uses labels to ensure that return instructions match valid return sites. 

7. Summary 
This paper has described a software dynamic translation-based implementation of instruction-set 
randomization. Instruction-set randomization is a powerful technique that defends against all application-
level binary code injection attacks independent of the vulnerability used to inject the code. The 
implementation uses a strong encryption algorithm, the Advanced Encryption Standard, to produce a 
random instruction set each time the protected application is loaded and executed. Without access to the 
encryption key, an adversary cannot produce a payload that will successfully execute on a protected 
system. We tested the security of our system by seeding different types of vulnerabilities into applications 
and then exploiting the vulnerabilities to inject code. In every case, our ISR-protected implementations 
detected and prevented execution of the foreign code. In addition, an Apache server was seeded with 
vulnerabilities. The server along with detailed information about the seeded vulnerabilites was delivered 
to a set of security experts for analysis and testing. The seeded server was subsequently subjected to a 
concerted set of attacks by the security experts. The ISR-protected web server was not compromised. 

The SDT-based implementation of ISR is sufficiently efficient to be used to protect critical service 
applications that are often the target of attack. Measurements of an ISR-protected Apache web server 
showed little or no performance loss over a natively executing Apache web server. Similarly, the 
performance of an ISR-protected domain name server was evaluated. The performance loss over a 
natively executing version was observed to be between 5 and 10 percent. [20] 

These performance results along with the security of the approach make SDT-based ISR a viable 
protection mechanism for critical server applications. While the approach only protects against code-
injection attacks, these represent a large class of attacks. Encouraged by the performance results, we are 
investigating the use of SDT to protect against other types of attack including arc injection and data 
corruption attacks. 
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Calling Sequence Diversity 

1. Introduction 
Software vulnerabilities manifest themselves in many different ways.  The traditional stack 
smashing attack takes advantage of a buffer overflow vulnerability to inject malicious code on to 
the stack and execute it [1].  In order to protect against such an attack, several defenses that 
effectively render the stack non-executable have been proposed.  While this approach will 
certainly thwart a stack smashing attack, it is not foolproof. 
A return-to-libc attack can bypass a non-executable stack by relying on existing code.  Instead of 
executing injected exploit code, the attack uses existing library functions that can have malicious 
consequences with certain arguments.  A simple example involves pointing the return address to 
the system() library function with the argument pointing to an instance of the string "/bin/sh".  
When the compromised function returns, a shell is executed without ever using any injected code 
[2]. 

This paper proposes a method that will detect and prevent return-to-libc attacks and other 
attacks that take advantage of existing code.  It is intended as a supplement to existing schemes 
that already thwart code injection attacks. 

2. Return-to-libc Exploits 
In order to understand how a return-to-libc attack works, consider the vulnerable function 

foo() shown in Figure 1a.  The contents of the stack during the execution of foo() are shown in 
Figure 1b.   

 
void foo(int arg1, int arg2) 

{ 
    char buffer[100]; 
 
    ... 
    scanf("%s", buffer); 
    ... 
} 
 
 (a) Vulnerable function (b) Contents of the stack 

Figure 1 
 

A buffer overflow vulnerability is present in foo() because scanf() will overwrite data 
beyond the allocated memory for buffer if the user provides a string that is longer than 100 
bytes.  Looking at the stack, we can see that this data will overwrite the return address for foo().  
Since the attacker can overwrite the return address for foo(), she can redirect control to any 
location she chooses once foo() returns.  In the case of a return-to-libc attack, the return address 
will be changed to the address of a library function. 

 
 
 
 
 

... 
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arg1 

(return address) 
(saved ebp) 
buffer[99] 
buffer[98] 
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hi
gh

er
 

stack 



 

 32 

 
 
 
 
 
 
 
 
 
 

 
Figure 2: Overflowing the stack 

 
Figure 2 illustrates how to overwrite the stack in order to cause a return-to-libc attack.  

The saved base pointer is overwritten by the arbitrary dummy value, since its value is 
unimportant.  The return address is replaced by lib_function, the address of the library 
function to be executed.  The value new_ret_addr will act as the return address for 
lib_function, as if it were pushed onto the stack during a normal function call.  Following 
new_ret_addr is the argument list for the call to lib_function, starting at new_arg1 [2]. 

Consider the case where the attacker wants to execute the system() function, which 
takes one string argument that is executed as if it were entered as a command in a shell.  If the 
attacker sets lib_function as the address of system() and sets new_arg1 as a pointer to the 
string "/bin/sh", this will execute a shell whenever foo returns. 

3. Approach 
The return-to-libc exploit is possible because the attacker is able to disrupt the intended 

control flow of the program through manipulation of the return address.  In order to prevent this 
type of attack we need a technique to ensure that any execution of library code comes from a 
legitimate function call in the program. 

One way to enforce legitimate execution of library functions is to develop a calling 
convention that prevents unauthorized invocation of potentially malicious functions.  Our 
approach to developing such a secure calling convention is to require a hidden parameter that 
will be checked by the called function.  This hidden parameter would be an arbitrary value acting 
as a key.  Since the attacker does not know what the key is, she will not be able to execute the 
function successfully. 

3.1 First Attempt 
Consider a simple implementation of this key system.  Vulnerable library functions such 

as system() are identified and rewritten to accept an additional parameter.  Code to verify that 
the parameter is the correct key is also added to these functions.  The modified library code is 
recompiled to produce a new protected shared library. 

Any calls to these protected functions must be changed to include the key as well.  The 
compiler is modified to add the key as the additional parameter.  Programs must be compiled 
with the modified compiler and linked with the modified library in order to receive protection. 

This implementation will prevent the attacker from returning directly to a protected 
function because he must supply the key.  However, it is possible to indirectly execute such a 

... 
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arg1 

(return 
address) 
(saved ebp) 

buffer[99] 

buffer[98] 

... 

... 

new_arg1 

new_ret_addr 

lib_function 
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buffer[99] 

buffer[98] 
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function by returning to a point in the code that contains a legitimate library function call.  This 
call would set up the key correctly and the call would succeed. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Returning to a legitimate call site 
 
 Consider the example in Figure 3.  Instead of changing foo’s return address to the 

address of system(), the attacker changes it to L1, the location of a legitimate call to system().  
This call has been compiled to include the key parameter, so the call to system() will succeed.  
In this situation the attacker is forced to use the command argument already in place at the call 
site, making it difficult to apply a set of malicious commands.  However, it could be possible to 
overwrite the data pointed to by command if it is on the stack.  Also, if a call site is found that gets 
arguments from registers or from the stack, it may be possible to manipulate these data locations 
in a way that gains control of the arguments. 

3.2 Improved Key System 
In order to account for this vulnerability, consider a different approach.  Rather than 

passing the key as an explicit parameter to the function, the key is kept in a global variable 
available to all functions.  Each function in the program has its own unique key.  As the program 
enters and exits functions, the global key variable changes accordingly. 

 
 
 
 
 
 
 
 
 
 

Figure 4: Key transformation 
 
 Figure 4 illustrates the basic idea behind key transformation.  First, a global key variable 

is added to the program.  It should be initialized to the key for main().  Whenever main() calls 
another function such as foo(), the key is transformed from main’s key into foo’s key through 
the keygen() process.  When that function returns, the key is transformed back into main’s key.  

 
 
int main() 

{ 
 
    foo(); 
 
} 

int key; 
 
int main() { 
    key = keygen(key, &main, &foo); 
    foo(); 
    key = keygen(key, &foo, &main); 
} 

void main() { 
    ... 
    foo(); 
    ... 
L1: system(command, key); 
    ... 
} 
 
void foo() { 
    // buffer overflow in foo sets 
    // return address to L1 
} 
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Note that keygen() is not an actual function.  It is merely pseudocode to illustrate the key 
transformation process. 

 The transformation is actually performed as an exclusive-or operation.  Given a source 
function and a destination function, a constant is calculated.  Performing an exclusive-or of this 
constant with the source key will produce the destination key.  This is demonstrated in the 
following equation, where c is the constant and ksrc and kdst are keys for the source and 
destination functions respectively. 

 
src dstk c k⊕ =  

 
 The transformation is achieved by providing a constant c that satisfies this equation.  We 

can solve for c: 
 

 
0

src dst

src src src dst

src dst

src dst

k c k
k k c k k

c k k
c k k

⊕ =
⊕ ⊕ = ⊕

⊕ = ⊕
= ⊕

 

 
 Therefore the constant c can be computed as an exclusive-or of the source and destination 

keys.  As shown in Figure 4, the keygen() process uses three values: the value of the global key, 
and the addresses of the source and destination functions.  The transformation is achieved by 
looking up the keys for the source and destination functions, performing an exclusive-or of the 
keys to produce the constant, and finally performing an exclusive-or of the global key with the 
constant.  The resulting value is stored back into the global key variable. 

 This process may seem excessive, but there is an important property involved.  The 
constant is calculated for specific source and destination functions, and therefore it assumes that 
the global key is already set to the key for the source function.  However, if the global key is not 
set to the correct key, the transformation will produce a meaningless and incorrect value. 

 
Figure 5:  Returning to a legitimate call site with key transformation 
 

void main() { 
    ... 
    key = keygen(key, &main, &foo); 
    foo(); 
    key = keygen(key, &foo, &main); 
    ... 
L2: key = keygen(key, &main, &system); 
L1: system(command); 
    key = keygen(key, &system, &main); 
    ... 
} 
 
void foo() { 
    // buffer overflow in foo rewrites 
    // return address 
} 
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Consider this in the context of our example from Section 3.2 involving a jump to a legitimate 
call site.  If the attacker modifies the return address to jump to some call in another part of the 
program, the global key will still have the value of the vulnerable function that he came from.  
This will be the wrong key for the transformation, and the resulting key will be wrong as well. 

 Figure 5 shows the example from Section 3.2 with the improved key system.  The global 
key variable is changed to foo’s key before the call to foo().  Again, a buffer overflow in foo() 
overwrites the return address.  However, if the attacker returns to the call at L1, the key will not 
be set to system’s key and the key check will fail.  If the attacker returns to L2, the key 
transformation from main() to foo() will fail because the key is actually still set to foo’s key. 

4. Implementation 
If such a key system were implemented statically, the attacker could easily inspect the 

binary file and determine the value of the key.  Therefore the proposed scheme will use a new 
random key every time the program is executed.  First, the program needs to be compiled with 
the new calling convention.  For this step I modified the Zephyr compiler infrastructure [3].  The 
key will be dynamically inserted into the code using Strata, a software dynamic translation tool 
[4]. 

4.1 Passing Information to Strata 
 A call to an actual keygen() function would incur significant overhead, so we would like 

Strata to insert the appropriate XOR instruction directly into the code fragment.  Strata will need 
to know the source and destination functions in order to calculate the correct constant.  If 
keygen() were compiled as a function call, it would be difficult for Strata to reliably determine 
the arguments.  The compiler pushes arguments on to the stack, and may end up using registers 
or temporary variables in the process.  Strata would need to backtrack through the code in order 
to determine the value of those arguments. 

 However, it is much easier to pass function addresses to Strata using function calls.  
Strata can determine the target of a function call without the need to look at any other code.  We 
can accomplish this by using a sequence of three function calls.  The first call to the reserved 
function strata_key_direct() acts as a placeholder to notify strata that a key should be 
transformed.  Strata should then use the next two function calls to determine the source and 
destination functions for the transformation.  When building a fragment, all three calls are 
discarded and replaced by the XOR instruction. 

So, instead of the compiler generating our original code at a call to foo(): 
 

key = keygen(key, &main, &foo); 
foo(); 
key = keygen(key, &foo, &main); 

 
The following code is generated: 
 

strata_key_direct(); 
main(); 
foo(); 
 
foo(); 
 
strata_key_direct(); 
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foo(); 
main(); 

 
The compiler produces the following assembly code: 
 

call strata_key_direct  ; notify Strata of key transformation  
call main               ; extract the address of main  
call foo                ; extract the address of foo  
 
call foo                ; original function call 

 
call strata_key_direct  ; reverse the key transformation 
call foo 
call main 

 
Finally, Strata will examine the binary and insert the following code into the fragment: 
 
 xor  %0x1234, key 
 call foo 
 xor  %0x1234, key 
 
where 0x1234 represents the constant that is calculated by Strata. 
 

However, this method will not work for indirect function calls since the destination of the 
function call is not constant.  In this case we must incur the overhead of a call to a 
strata_key_indirect() function that will use the value of the function pointer when 
calculating the constant to use in the transformation.  Figure 6 shows how a call through function 
pointer fp would be protected. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6:  Key transformation for an indirect function call 
 
 The strata_keygen_indirect() function will examine the values of its arguments in 

order to calculate the required constant.  The global key variable will be transformed with an 
exclusive-or operation as usual.  Since the key variable is global, it does not need to be passed as 
an argument.  Strata will process the call to strata_key_indirect() as a normal function. 

 

void main() { 
    void (*fp)(); 
    fp = &foo; 
 
    strata_key_indirect(&main, fp); 
    (*fp)(); 
    strata_key_indirect(fp, &main); 
} 
 
void foo() { 
} 
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4.2 Compiler Modifications 
The Zephyr compiler [3] is used to add the key transformation code at all function call 

sites.  This was done by modifying lcc, one of Zephyr’s possible front ends.  The keygen() code 
is inserted after the intermediate language trees have been fully constructed by lcc.  As these 
trees are added to the code list that will be passed to the code expander, they are checked for any 
function calls.  If a function call is present, the keygen() code is inserted before and after the 
call. 
4.2.1 Direct Calls 

 
 
 
 
 
 
 
 
 
 

Figure 7:  Intermediate language trees for foo(arg, 100) 
 
 As an example, Figure 7 illustrates the forest of trees that is constructed for the function 

call foo(arg, 100).  Solid arrows represent parent-child relationships within the trees, and 
dashed arrows represent links between trees in the forest.  At this point in the compilation 
process, function arguments have been pulled out into separate trees, and the structure is quite 
simple. 

 
 The modified version of lcc traverses this forest, looking for a CALL node.  If any such 

node is found, the appropriate strata_key_direct() calls are inserted before the first argument 
and after the original function call.  Figure 8 illustrates the modification made to the forest 
shown in Figure 7, assuming that the function foo() is called from main(). 

 
 
 
 
 
 
 
 
 
 

Figure 8:  Modified intermediate language trees for foo(arg, 100) (original call is shaded) 
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4.2.2 Indirect Calls 
 
 
 
 
 
 
 
 
 
 

Figure 9:  Modified intermediate language trees for (*fp)() (original call is shaded) 
 
 If a CALL node is found with an INDIR node as a child, the call is an indirect call and must 

be treated differently.  A call to strata_key_indirect() must be inserted with the appropriate 
arguments.  Figure 9 shows how to handle key transformation for an indirect call through the 
function pointer fp, again assuming that the call is made in main().  These modifications mirror 
the example shown in Figure 6. 

 
 
 
 
 
 
 
 
 
 

Figure 10:  Problematic indirect call sequence 
 

Unfortunately, certain compiler generated call sequences make the transformation in 
Figure 9 difficult.  Figure 10 shows a sequence that requires multiple trees to calculate the 
address of the function to call.  The call is performed through a temporary variable that is 
assigned in the previous tree.  This is not a realistic example, but a simplification of much more 
complex call trees that use temporary variables to simplify the calculation of the function 
address. 

The problem with the sequence in Figure 10 arises when generating the first call to 
strata_key_indirect().  We must place this call before the first argument tree, but the value 
of temp is invalid at this point because the assignment to temp has not taken place yet.  The call 
to strata_key_indirect() cannot go after the assignment tree, because the compiler will 
assume that the existing argument should be associated with strata_key_indirect() rather 
than the original indirect call. 
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Figure 11:  Saving call sequence values from Figure 10 for later 
 
 In order to avoid this problem, call sequence values are saved in new temporaries so that 

they can be used later.  As the compiler advances through the code, it maintains a list of pointers 
to arguments that it has come across.  If it turns out that these arguments belong to an indirect 
call, all arguments and the call itself are rewritten as assignments to temporaries.  Figure 11 
illustrates how the sequence from Figure 10 would be transformed.  The argument is stored in 
temp_arg1 and the function pointer is stored in temp_fp while the middle assignment tree 
remains unchanged. 

 Once these values have been stored in temporaries, the remaining work is simple.  In 
addition to generating the calls to strata_key_indirect(), the original call must be 
reconstructed.  All the values required are now stored in convenient temporary variables.  The 
key transformation is achieved by generating the following code sequence (assuming the code is 
in main()): 

 
 strata_key_indirect(&main, temp_fp); 
 (*temp_fp)(temp_arg1); 
 strata_key_indirect(temp_fp, &main); 
 
 At this point, I will omit the tree structure for this code sequence, but it will be very 

similar to the sequence shown in Figure 9.  Note that these new temporaries will generate some 
additional overhead, but they are only used in the event of an indirect call, which is already 
incurring more overhead than usual. 

4.3 Strata Modifications 
 Strata is a software dynamic translation tool capable of modifying binary code on the fly 

[4].  Strata is used to dynamically generate and insert the key transformation code based on the 
placeholders created by the compiler.  Strata also maintains the keys themselves, storing them in 
a hashtable for quick access. 
4.3.1 Key Hashtable 

 The keys themselves are random 32-bit integers.  The hashtable stores keys for each 
function and is indexed by the function address.  It is structured as an array of linked lists.  The 
index into this array is computed by selecting the least significant bits of the function address. 

 For ease of programming all access to the key hashtable is done through the 
keytable_lookup() function.  This function takes an address as an argument.  If there is a key 
installed for that address, its value is returned.  However, if no key is found, a random key is 
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generated, installed, and its value is returned.  Therefore the programmer can call 
keytable_lookup() whether or not a key exists for that address yet. 
4.3.2 Call Translation 

 Our goal in modifying Strata is to recognize the calls set in place by the compiler and to 
replace them with the appropriate key transformation code.  This goal is achieved by providing a 
custom xlate_call() function to the target interface.  This function is responsible for 
translating any call statements encountered in the program text while building a fragment. 

The custom function, called xlate_key_call(), examines the target address of all 
function calls.  If a call to strata_key_direct() is found, Strata will fetch the next two 
instructions assuming that these are calls to the source and destination functions of the key 
transformation.  A target address is computed for each of these function calls, and keys are 
retrieved from the hashtable for these addresses using keytable_lookup().  An exclusive-or of 
these keys is performed to produce the required constant.  Finally, Strata emits code into the 
fragment to perform an exclusive-or of the global key variable with the constant. 

 In order to handle indirect function calls, the strata_key_indirect() function is 
implemented in Strata.  The functionality is the same as the xlate_key_call() function 
described above with some obvious exceptions.  The function addresses are supplied as 
arguments to the function, so these can be passed directly to keytable_lookup().  Also, instead 
of emitting code to perform the exclusive-or, it is performed as part of the function.  There is no 
special code to handle calls to strata_key_indirect().  They are treated just as any other call. 
4.3.3 setjmp() and longjmp() 

 The setjmp() and longjmp() functions in C are used transfer control across functions.  
When setjmp() is called, the stack environment is saved.  When longjmp() is called later from 
another function, the stack environment is restored and program execution continues as if the 
corresponding call to setjmp() had just returned.  This is a concern because the key will need to 
be maintained appropriately when jumping across functions. 

 
Figure 12 illustrates the key transformations applied when jumping from bar() to foo() using 
longjmp() (with our original keygen pseudocode).  The call to setjmp() is fine, since it returns 
normally.  However, the call to longjmp() transfers to the setjmp() and acts as if setjmp() 
was returning again.  So, the key is transformed from bar’s key to longjmp’s key, and then from 
setjmp’s key to foo’s key. 

void foo() { 
    key = keygen(key, &foo, &setjmp); 
    setjmp(env); 
    key = keygen(key, &setjmp, &foo); 
} 
 
void bar() { 
    key = keygen(key, &bar, &longjmp); 
    longjmp(env); 
    key = keygen(key, &longjmp, &bar); 
} 

Figure 12:  Key transformation for setjmp() and longjmp() 
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 The transformation from setjmp() to foo() will fail since the key is still set to 
longjmp’s key.  However, this problem is easily solved by giving setjmp() and longjmp() the 
same key.  We can easily pre-install keys into the hashtable during Strata’s initialization.  If 
setjmp() and longjmp() have the same keys, a longjmp() will correctly maintain the global 
key. 

4.4 Library Modifications 
 The key transformation system detailed here is useless without modifications to the 

library functions in order to verify that the correct key has been established.  The source code to 
glibc was obtained so that the code could be modified to include key verification. 

Checking the key is accomplished by a call to strata_key_check(), which takes the 
address of the current function as an argument.  For example, protecting the system() function 
involves placing strata_key_check(&system) in the code for system().  The 
strata_key_check() function will look up the key for the address given in the argument and 
compare it to the global key.  If the keys do not match, this is evidence that the intended control 
flow of the program has been disturbed.  An error message is displayed and execution is 
terminated, preventing the attack. 

5. Results 

5.1 Verification 
 For verification, the Apache web server (version 1.3.33) was compiled with the modified 

compiler.  There are no known buffer overflows in this version, so the source code was modified 
to add one.  Work done by Shacham et. al. [5] describes a method for creating a buffer overflow 
in Apache and exploiting it with a return-to-libc attack.  This same technique was replicated to 
produce a working exploit for testing and verification purposes. 

 The buffer overflow was created in Apache’s ap_getline() function which returns the 
current line of an incoming HTTP request.  A local buffer was added to this function, and the 
HTTP request is copied to it using strcpy().  A very large request will now overflow the local 
buffer and overwrite the stack frame.  If the request is carefully constructed, the return address 
can be overwritten by system’s address with it’s parameter pointing into the request string.  As a 
result, any arbitrary string can be passed to system(). 

 
 With a little tweaking, the exploit was successful in executing system() with an 

unprotected version of Apache.  Next the exploit was tried with the protected version of Apache 
using a version of system() that checks the key.  This time, the exploit was not successful in 
executing system.  The server logs showed that the key check had indeed failed while attempting 
to execute system(). 

5.1 Performance 
 Performance was tested using the SPEC benchmark suite.  Each benchmark was run 

using three different compilers.  The first compiler, labeled native, is the Zephyr compiler using 
the unmodified lcc frontend.  This version measures the performance of native execution on the 
processor.  The second compiler, labeled strata, adds the default version of Strata.  This version 
is running under Strata, but no protection is enabled.  The final compiler, labeled protected, uses 
the full call sequence diversity protection.  Currently, the only function with a key check is the 
system() function. 
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All benchmarks were compiled and executed on a dual 2.8GHz Intel Pentium 4 machine 
running Redhat Linux 7.3. 
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Figure 13:  Overhead for SPEC benchmark suite normalized to native execution 

 
 Figure 13 shows the results of the performance tests.  For the most part, the added 

protection of call sequence diversity does not add much more overhead than Strata itself.  The 
gap and vortex benchmarks are the exceptions.  These benchmarks add a much higher overhead 
presumably due to frequent indirect function calls.  Even when you include these, there is an 
average overhead of 1.54x over native execution.  Considering the overhead of software dynamic 
translation, this is reasonable.  However, there is certainly room for improvement. 

6. Related Work 
 Some techniques that defend against return-to-libc attacks involve what is known as 

address obfuscation.  This includes the work of Bhatkar, DuVarney, and Sekar [6] and Xu, 
Kalbarczyk, and Iyer [7].  In this approach the locations of program data and code are 
randomized, as well as relative distances between data locations.  The attacker will not be able to 
execute the attack because the locations of the stack and library code are randomized at load 
time.  While the attacker could try to find these locations, the probability of guessing correctly is 
extremely low. 

 Several techniques have been proposed that protect the stack from being modified 
illegally.  These include StackGuard [8] and StackShield [9].  StackGuard uses canary values on 
the stack that are checked when the program returns.  StackShield saves the return address to a 
write-protected memory area when the function is entered.  Such defenses would protect the 
return address from ever being modified.  However, these defenses are not perfect and they do 
not address other methods of modifying control flow such as alterations to the global offset table. 
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7. Conclusion 
 When used in conjunction with techniques that prevent code injection, call sequence 

diversity can provide even further security by thwarting return-to-libc attacks.  Any attempt to 
subvert the intended control flow of the program will be reflected in the global key.  The 
program will not allow the execution of any protected function if the key is incorrect. 

 However, it is difficult to say exactly which functions should be protected.  Certainly 
there are some obvious ones, such as system(), but it is difficult to say which functions can and 
cannot be used maliciously.  It may be best to simply protect every function, though that 
approach may incur significantly higher overheads. 

 Given that a system call is generally necessary for a hacker to do any harm to the system, 
it may be a good idea to check the key at every system call.  This could be accomplished by 
patching the operating system, or through Strata.  An added bonus of this approach is that it 
could prevent most code injection attacks as well, since they generally rely on some sort of 
system call. 
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Strata Fault Tree Analysis 
Genesis Team 

1.0 Introduction 

Red team exercises can greatly increase knowledge about the vulnerabilities of a system. 
Generally speaking, red team exercises rapidly introduce adversarial thinking into the system 
testing process. This thinking centers on probing a system for vulnerabilities—system responses 
of advantage to an adversary—that may side-step or abuse the intended functionality of the 
system. The results of the red team exercise can lead to new insights into the system’s service 
definition, improve its implementation, and provide more realistic expectations of its capabilities. 

Despite the advantages of “red teaming,” there are several constraints that often limit the 
effectiveness of the experience. First, experimental systems are often complex and contain novel, 
non-standard features. Second, red teams have limited time to examine a system, as their 
expertise is often chartered as a matter of cost effectiveness. This contrasts with the great length 
of time and effort that a true adversary might devote. 

Therefore, we seek ways to enhance a red team’s capabilities within a realistic time frame. We 
note the relationship between the novelty of many experimental systems and the limited time of 
procured red teams. Novelty means that time might be required for a red team to learn the system 
to be attacked. Yet time is of limited supply. We argue that by reducing the amount of time 
required to communicate expert knowledge of a system to a red team, the system team may 
enhance the red team exercise. 

Communication of system knowledge to red teams is often informal. We propose the 
formalization of this communication through formal documentation to directly communicate 
system knowledge into the viewpoint of a red team. One such formal document is a fault tree 
analysis. This document describes the hazards, or potential undesirable scenarios that might arise 
in a system. Each hazard is followed by a logical postulate defining how the hazard can occur. 

It is our intention that the presented Strata fault tree identify general strategies with which 
hazardous conditions may arise. The goal of this fault tree is not necessarily to list specific 
vulnerabilities, but to provide a guide for how one might track down and find vulnerabilities in a 
program protected by Strata’s mechanisms.  

1.1Symbols 

The fault tree uses several symbols for the purposes of brevity. These symbols have the following 
meaning: 

S: Strata code, data structures, and control context 

P: The server program’s code, data structures, and control context 
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SP: The total Strata and server program’s code, data structures, and control contexts (the entire 
application) 

G: The specific goal of an attacker If an attacker achieves G, an attack succeeds. If not, it fails. 
Think of G as a Boolean postulate over the state of SP. 

1.2Textual Representation 

The fault tree presented in the next section is represented as a tree as follows: 

• The root of every tree is a hazard 
• A node is labelled as one of LEAF, AND,OR, SUBTREE DEFINITION, or 

SUBTREE REFERENCE 
• A LEAF NODE is a textual description of a fault 
• An AND node indicates a fault such that the fault occurs only if all of its child nodes 

occur. Its textual representation is a summary of its causality or consequence 
• An OR node indicates a fault that occurs if any of its child nodes occur. Its textual 

representation is summary or causally descriptive 
• A SUBTREE definition node has a single child, and is simply a named subtree 
• A Subtree reference node has no children, and indicates that the current node is a 

reference to a subtree as defined by a subtree node (see previous bullet.) A copy of 
the referenced subtree effectively replaces this node. 

• A node’s children are represented nodes below the node’s representation in the list, 
and indented one unit. 

2.0 Fault Tree Analysis 

1. Integrity Violation of code stream allows ‘injected code’ from an attack to achieve 
goal G in the strata system and its application 

•AND: Integrity violation of code stream accomplishes G for attacker in SP 
•OR: Integrity of code stream is compromised 

•OR: Injected code is executed  
•LEAF:Injected code is executed as system level code. OS/Hardware fault 

in protected system space integrity and/or authorization 
•OR: Injected Code is executed as application level code 

•AND: Code is injected into SP space and executed by SP code stream 
•OR: Code is injected into SP space 

•AND: Code is injected into P’s spaces 
•OR: Input-based vulnerability exists in application P 

•LEAF:Stack overrun 
•LEAF:Double-Free Malloc 
•LEAF:Printf vulnerability 
•LEAF:Other common input attack pathways not listed 

•LEAF:Strata does not insert correct run-time check(s) for 
vulnerability(ies) into vulnerable fragment(s) 

•OR: Code is injected into S’s spaces 
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•OR: Code is injected into Strata’s fragment cache 
•OR: Insider injects malicious code into fragment cache  

•LEAF:Rogue S or P thread 
•LEAF:Privileged OS process modifies cache 

contents 
•AND: Fault in Strata translation/injection mechanism 

•LEAF: Design fault in Strata fragment cache 
injection responds to malicious payload 
program P to inject ‘additional’ unintended 
code. (ex. Short string literals stored by P in 
instruction cache contain attack code 
sequences, or help reverse engineer the 
encryption key) 

•LEAF:program P contains malicious payload 
•OR: Outside process modifies contents of fragment 

cache 
•OR: OS Permission Fault: Incorrect protection bits 

on instruction cache. 
•OR: Strata executer sets up Strata fragment cache 

for process sharing 
•LEAF:Erroneous process exec 
•LEAF:Malicious inside operator 

•LEAF: Code is stored in allocated IBTC or thread cache 
•LEAF:Feature is not in frequent write use in the 

program (example, no indirect jumps) 
•LEAF:Code is used before it is overwritten 

•DEFINES SUBTREE A: 
•AND: SP Control Stream correctly executes injected code 

•OR: Code does not generate protection or instruction 
faults on execution 

•LEAF:Attacker guesses variations correctly on first try 
•DEFINES SUBTREE E:SUBTREE  

•REFERENCE to SUBTREE:  
•AND: Memory Holding Injected Code is Executable 

•LEAF:MProtect cannot make read-allowed memory 
non-executable (This is always true in current 
STRATA implementation.)  

•LEAF:Code is allocated from POSIX mmap as 
executable by Strata in fragment cache 

•LEAF:MMAP fails to protect read|write only memory 
from execution (POSIX noncompliance) 

•OR: SP Control Stream is redirected to Code Injection 
Space 

•OR: By expected control flow of SP Injected code is 
reached by normal SP instruction/data stream. 

•DEFINES SUBTREE B: 
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•REFERENCE to SUBTREE:. (By modified control flow, 
Injected code is reached by abnormal SP 
instruction stream) 

•AND: Code is injected into ~SP space and executed by SP code stream 
•LEAF:OS-Hardware Level Erroneous inter-process isolation 
•REFERENCE to :SUBTREE A 

•DEFINES SUBTREE B: 
•LEAF:Instruction pointer position is erroneous 

•LEAF:Strata jumps to incorrect code position for next segment 
•OR: Relative address is modified 

•LEAF:return address modified 
•LEAF:jump address modified 
•LEAF:interrupt number modified 

•LEAF:Absolute jump address is modified 
•LEAF:Unintended interrupt is generated 

•LEAF:Unintended elements of instruction stream accomplish G 

2.Data manipulation affects behavior of SP allowing an attacker to achieve goal G 

•AND: Data Overwrite modified behavior of SP to achieve goal G 
•DEFINES SUBTREE E: 

•REFERENCE to SUBTREE: 
•DEFINES SUBTREE C:Data Overwrite write on SP space by adversary  

•OR: Attacker changes (non-instructional) data of SP 
•LEAF:Attacker has legitimate indirect write access to a data structure 

through input messages (example, hash table degeneration) 
•OR: Attacker applies a vulnerability in SP to write Strata /App data 

•LEAF:Attacker’s input exploit an error in a data structure 
implementation to modify contents within a data structure 
(adding extra records, duplicates, etc.) 

•LEAF:Attacker’s input exploits a general software architecture 
vulnerability allowing attack to succeed 

•LEAF:Race conditions overwrite the legitimate client’s request 
•LEAF:Buffer overflows allow server-unintended modification of 

client request data 
•LEAF:pointer-based attacks (double-free) 
•LEAF:Code injected through a vulnerability deforms client 

request 
•LEAF:Other Attack Strategies? 

•AND: Incorrect setting of memory protection in OS, plus incorrect 
MPROTECT settings, allows another process to overwrite data  

•LEAF:MProtect Fails to Set Read Only 
•LEAF:Operating System allows another process access to the data by 

failure to use read protect (in mmap if POSIX OS) 
•OR: SP data structure overwritten accidentally by another process, 

where that other process does so: 
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•LEAF:Accidentally 
•LEAF:Maliciously as insider process 
•LEAF:Unintentionally by vulnerability exploited by attacker(buffer 

overflow) 
•LEAF:Carelessly through overextended power applied by attacker 

(printf) 
•OR: Strata run-time checks do not detect the data overwrite 

•LEAF:No run-time check for data integrity 
•LEAF:Fault in run-time check 
•LEAF:false-negative in run-time check 

•LEAF:The Overwritten Data results in the attacker achieving goal G 
•LEAF:Overwritten data modifies branching behavior in code 
•LEAF:Overwritten data modifies internal records such as traces, alarms, 

profiles, etc. 
•LEAF:Overwritten data modifies values, sums, records of the application 
•LEAF:Overwritten data modifies who is contacted by the application (as might 

be used in an indirect DoS attack) 
•LEAF:others? 

3.The integrity of a client request is violated within the server environment and is not 
prevented from affecting the server. (Note the request includes any validation material. 
Signature, hash check, etc.) 

•DEFINES SUBTREE D: 
•AND:  

•OR: No Run-Time Detection 
•LEAF:Failure of all run-time checks on the integrity of client input. 
•LEAF:Run-time check cannot detect the change to input (ex, hash is 

modified to correctly reflect the input message) 
•LEAF:Integrity failure of client request is effective (not write over of same 

data) 
•OR: Memory storing the client request has modified values from client 

request 
•LEAF:Privileged insider modifies server memory 
•OR: MemProtect set inadequately on server, allowing the client request 

to be modified in the sever’s memory by other processes with 
unintended access 

•LEAF:Accidentally 
•LEAF:Maliciously as insider process 
•LEAF:Unintentionally by vulnerability exploited by attacker(buffer 

overflow) 
•LEAF:Carelessly through overextended power applied by attacker 

(printf) 
•OR: Application and/or Strata code erroneously overwrites a client’s 

message in local memory with erroneous data 
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•LEAF:Random, non malicious, Application/Strata error overwrites 
client request with predictable or unpredictable values 

•OR: Deliberate outside influence results in placement of predictable 
(to outsider) values within the client request message 

•LEAF:Malicious outsider can send input to the system 
•OR: Malicious outsider can use its input events to cause SP code 

to unintentionally write over the other client’s request 
through a vulnerability 

•LEAF:Race conditions overwrite the legitimate client’s request 
•LEAF:Buffer overflows allow server-unintended modification of 

client request data 
•LEAF:pointer-based attacks (double-free) 
•LEAF:Code injected through a vulnerability deforms client 

request 
•LEAF:Other Attack Strategies not listed 

•LEAF:SP code cannot decode the client message properly from local memory 
(The message is proper but SP has an interpretation error) 

4.The integrity of a bind response message to a client is violated within the server 
environment prior to sending to client 

•REFERENCE to SUBTREE:C 

5.Applying Strata to application causes erroneous application behavior achieving the 
goal G of an adversary (such as local denial of service to legitimate clients) 

•OR: STRATA induces slow processing of application 
•OR: HASH TABLE DEGENERATION 

•AND: LARGE FRAGMENT CACHE DEGENERATION: causing linear search 
of the fragment cash for fragments each time a fragment is accessed. 

•LEAF:Odd fragment locations in executable memory does not cause a 
highly unusual executable in size that is noticed by sys admins 

•OR: BIND code is aligned in a manner that is degenerate with respect to 
the STRATA HASH() function 

•LEAF:Accidental misalignment (highly unlikely) 
•LEAF:Deliberate poor alignment (adversary has access to compiler) 

•LEAF:Indirect Branch Table Degeneration 
•LEAF:IBTC Resonance results in performance hit 

•LEAF:Adaptive Indirect Branch Caching is enabled 
•LEAF:Many Branch usages are highly oscillatory at a frequency 

resonating with the occurrence of reaching the branch usage 
count for storage in the IBTC (IBTC_THRESHOLD) 

•LEAF:The periodically used branches conflict with one another for 
space in the IBTC 

6.Privacy of client communications is violated 
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•AND: Adversary reads information from SP memory and retrieves this information 
•LEAF:Adversary knows where messages to and from clients are stored 
•LEAF:Adversary reads the memory storing the client messages (read 

vulnerability) 
•LEAF:Adversary writes the information read into a useful location such as 

outgoing message queue (write vulnerability) 
•LEAF:Adversary intercepts the outgoing message 
•LEAF:Outgoing message is not encrypted (not secured) or encryption is known 

7.Strata reveals secrets necessary for many forms of attack 

•DEFINES SUBTREE E: 
•OR: Strata Configuration Information is revealed that is in use to protect the 

Application and Strata 
•AND: Encryption is known to the adversary 

•LEAF:Encryption is being used 
•OR: Encryption key is discovered 

•AND: Encryption key is read from Strata space by adversary 
•LEAF:Key is not read protected using M-protect when not in Strata-

mode 
•LEAF:Key location is identified by the adversary 

•AND: Encryption key space is successfully searched by adversary 
•LEAF:Small enough encryption key space 
•LEAF:Application restart on crash 
•LEAF:repeated crashing is not easily detected 

•LEAF:Calling Sequence Permutation discovered by adversary 
•OR: Jump tag discovered by adversary 

•AND: Expected Jump Tag Read from Strata Space 
•LEAF:M-Protect does not protect Jump Tag in Strata Space when not 

in Strata execution 
•LEAF:Jump tag storage location is read by adversary and is known as 

jump tag to the adversary 
•OR: Jump Tag Read from Environment Space by adversary 

•LEAF:Through exploit allowing read of environment variables while 
executing application fragment 

8.Misconfiguration of Strata  

•OR: Misconfiguration of Strata 
•LEAF:Misconfiguration through operator error 
•LEAF:Misconfiguration for possibly by an attacker through re-execution of Strata 

through an libc exec vulnerability 

3.0 Potentially Vulnerable Data Structures 

The data structures of greatest importance to Strata’s security are: 
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• stats in strata.c 
• target interface record 
• Strata’s thread table (it keeps its own) 
• fcache: fragment cache that holds the decrypted application  
• indirect branch targets cache 
• Strata arena: memory management abstraction for Strata data structures 
• Encryption Context Data Structure (stores the encryption key) 

An adversary may examine how the integrity of these object’s code and data may be violated so 
as to achieve the goal of the attacker, using the general guidelines of the presented fault tree. 

4.0  Usage Suggestions 

As was stated in the introduction to this document, the purpose of this fault tree is to identify 
general strategies with which hazardous conditions might arise. To the best of our ability the tree 
is sound, but cannot be complete. The goal of this fault tree is not to list specific 
vulnerabilities.To reiterate, this is a guide for how one might track down and find vulnerabilities 
for Strata’s protection of a server program, not a specification of a vulnerability’s existence. 

Two approaches to using the tree seem useful. 

1. The high level hazards and their branches might provide guidelines, while the leaves of the 
tree give examples of how a search for a fault might proceed.  

2. The leaves of the tree represent interactions with the data structures of interest to an 
attacker, and their correlation to hazards can be followed up through the tree 
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Background  
Software tampering can be defined as carrying out unauthorized modifications on software that 
allow an adversary to misuse the software in some way. A survey of tampering issues and anti-
tamper technology can be found in the work of Atallah et al [1].  

Tampering is conducted by adversaries for many reasons including:  

• Changing the software’s functionality. For correct operation, all computer systems depend on 
the use of the software that was designed and built to realize the computer systems’ intended 
purpose. If that software is altered or replaced by an adversary with malicious intent, the 
result could be serious. For example, information could be compromised or service could be 
altered. In a weapon system, an ATM machine, financial software, a “smart” card and similar 
systems, tremendous damage could be done.  

• Reverse engineering the software. Software often contains valuable intellectual property that 
would be useful to an adversary. By stealing a copy of the software and reverse engineering it, 
the adversary can obtain the intellectual property with little cost.  

• Changing the software’s target. In some cases, reverse engineering is not necessary for an 
adversary to gain value from an existing piece of software, it is often only necessary to 
execute the software under conditions different from those intended by the software’s owners. 
By stealing a copy and using his or her own target computer, an adversary gains the value of 
the software without paying for it. This type of malicious behaviour is often called piracy.  

 
Since tampering can have serious consequences, the owners and operators of many computer 
systems desire a mechanism to make tampering as difficult as possible, i.e., they desire their 
software to be hardened against tampering, and, if possible, made tamperproof. The need for 
anti-tamper technology and practices has been documented by the Department of Defense [2] 
and the Government Accounting Office [3].  

Tamperproofing software is difficult because the software is often stored at many different 
locations and often transmitted between locations. A given software system S might be built 
using hundreds of source-code files that are kept in a file system maintained by S’s 
manufacturer. That file system will usually be shared so that a number of people might have 
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access to the file system and possibly also to all or part of S.  

Once the system S is built, it will be in one of several different forms usually referred to as 
binary and be stored using one of several different media. Supplying the binary form of S to 
those who will use it might involve physical movement of the media or transmission over a 
network.  

The binary software used by a computer is usually stored in a file system that is physically close 
to that computer. When it is not being used, the software remains available in that file system. 
When it is being used, the software is also stored in the main memory of the computer using it.  

An adversary only needs to gain access to the software once in order to tamper with it, and, for 
some forms of tampering, the access gained need not be to all of the software. If the adversary 
wants to change the functionality of the software, all that he or she needs to do is gain access to 
that part of the software which provides the functionality to be changed. Access might be to the 
source files, the binary files, to the tools that are used to build the software (such as compilers 
and linkers), to shared libraries that the software uses, or to the software during execution. If the 
change is not detected, then the adversary has met his or her goal. The number of locations in 
which the software resides in its various forms makes protecting software from tampering very 
difficult.  

The goal of those with a stake in the correct operation of the software is to ensure that the 
software is protected from tampering in all locations and in all forms. Protection of the software 
at the manufacturers location requires trust in all of those preparing the software. This is similar 
to any situation in which information is being developed, and so traditional techniques, such as 
access restriction, can be employed. Beyond the site of the software’s original manufacturer, 
however, the problem of protecting the software against tampering is much harder since most 
people with access to the software are not known to be trustworthy.  

Our technique described here achieves the stakeholders’ goal and defeats all known credible 
tampering threats. It works by encrypting the software using a strong encryption algorithm. The 
protection that this affords is assured, and it is much more reliable as an anti-tampering technique 
than software obfuscation approaches. The technique implements anti-tampering efficiently 
requiring only a small execution overhead, can be applied to virtually any software system, and 
can be applied retroactively to existing systems.  

Summary Of Technique  
The technique meets the anti-tampering goal discussed above by maintaining the software in 
encrypted form until it is executed. The protection provided by encryption can be very strong 
because: (1) decryption by an adversary using state-space exploration requires resources that are 
beyond those available; and (2) decryption by an adversary using the appropriate key or keys is 
only possible if the key or keys are not protected properly. Existing techniques are available for 
key distribution and protection.  
 
Encrypting software as an anti-tamper mechanism is not new. Present software encryption 
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mechanisms, however, either leave the software in plain form to such an extent that the software 
becomes vulnerable to tampering or the decryption process is extremely inefficient. The 
technique presented here addresses both of these problems.  

Applying the technique consists of five steps: (1) the software is encrypted on a host computer in 
a trusted facility by its owners or the manufacturer prior to its deployment; (2) the software is 
conveyed to any location where it is needed in encrypted form; (3) the software is stored on the 
target computer upon which it is to run in encrypted form; (4) the software is loaded into 
memory on the target computer in encrypted form; (5) the software is decrypted just prior to 
execution. Only part of the software is kept in decrypted form at any given time. The decrypted 
software is held in a protected memory area.  

Encryption at the trusted facility is carried out using an unspecified encryption mechanism. 
Decryption just prior to execution is effected using an unspecified decryption mechanism. An 
example of how decryption might be implemented in practice is the use of a supplemental 
specialized hardware unit of which many are available. Such devices contain the decryption 
key(s) and the processing hardware that executes the decryption algorithms. Without this device, 
the encrypted software cannot be decrypted. The keys used for encryption and decryption are 
made available to the host and target computers using a conventional key management system.  

An example of how decryption might be controlled is by the use of a dynamic binary translation 
mechanism. With this approach, each fragment of the software is fetched as needed and sent to 
the decryption mechanism. The decrypted version of the fragment is stored in a region of 
memory called a fragment cache and then executed. If the fragment is executed more than once, 
the originally decrypted version is fetched from the fragment cache provided it is still there. The 
fragment cache is emptied periodically to ensure that only a small amount of the software is 
stored in plaintext form.  

In order to tamper with the software after it has been encrypted, an adversary would have to 
either: (1) break the encryption; or (2) tamper with the software during execution. Decrypting the 
software is as difficult as decrypting any form of encrypted information. Provided the software is 
free of tampering when it is encrypted, the chances of tampering prior to execution is the same as 
the chances that the encryption can be broken.  

Tampering during execution requires that the adversary gain access to that part of the software 
maintained in plain text form by the decryption mechanism. Nothing is specified in this 
technique about the decryption mechanism and so nothing is specified about what parts of the 
software will be in plain text form at any given point during execution. Using the example of a 
decryption mechanism given above in which dynamic binary translation is used, the only place 
where the software is maintained in plain text form is the fragment cache. In this example, the 
fragment cache is protected with a variety of software and hardware mechanisms.  

Applying our Technique  
Our technique provides very strong protection against tampering, for example:  
• Changing the software’s functionality. This form of tampering is prevented by the fact that the 
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software remains encrypted everywhere that it is stored and during all transmissions prior to 
execution. Without the decryption key(s), any modification(s) effected by an adversary to the 
encrypted software would either not survive the decryption process or would be detected.  

• Reverse engineering the software. This form of tampering is prevented by the fact that the 
software remains encrypted everywhere that it is stored and during all transmissions prior to 
execution. As a result, the adversary would only be able to acquire an encrypted version of the 
software. Acquiring the encrypted software does the adversary no good because he or she will 
not be able to conduct any form of static or dynamic analysis on the software.  

• Changing the software’s target. This form of tampering is prevented by the fact that the 
software requires a decryption key in order for it to be executed. Thus, copying the software 
will not allow it to be executed on an unauthorized target.  

 
For more information, please refer to the following publication. While this paper focuses on 
using our technique for protection against code-injection attacks, the mechanisms involved apply 
to the general problem of anti-tampering.  

Secure and Practical Defense Against Code-injection Attacks Using Software Dynamic 
Translation. Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David 
Evans, John C. Knight, Anh Nguyen-Tuong, and Jonathan Rowanhill. Second International 
Conference on Virtual Execution Environments. Ottawa, Canada, June 14-16, 2006.  

The technology described in this paper provides a solid foundation on which to build 
sophisticated tamper proofing technologies, above and beyond what was described in this white 
paper.  
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Abstract 

 
We present an architectural framework for systematically using automated diversity to provide high assurance 
detection and disruption for large classes of attacks. The framework executes a set of automatically diversified 
variants on the same inputs, and monitors their behavior to detect divergences. The benefit of this approach is that it 
requires an attacker to simultaneously compromise all system variants with the same input. By constructing variants 
with disjoint exploitation sets, we can make it impossible to carry out large classes of important attacks. In contrast 
to previous approaches that use automated diversity for security, our approach does not rely on keeping any secrets. 
In this paper, we introduce the N-variant systems framework, present a model for analyzing security properties of N-
variant systems, define variations that can be used to detect attacks that involve referencing absolute memory 
addresses and executing injected code, and describe and present performance results from a prototype 
implementation. 

 
1. Introduction 

Many security researchers have noted that the current 
computing monoculture leaves our infrastructure 
vulnerable to a massive, rapid attack [70, 29, 59]. One 
mitigation strategy that has been proposed is to increase 
software diversity. By making systems appear different 
to attackers, diversity makes it more difficult to 
construct exploits and limits an attack’s ability to 
propagate. Several techniques for automatically 
producing diversity have been developed including 
rearranging memory [8, 26, 25, 69] and randomizing 
the instruction set [6, 35]. All these techniques depend 
on keeping certain properties of the running execution 
secret from the attacker. Typically, these properties are 
determined by a secret key used to control the 
randomization. If the secret used to produce a given 
variant is compromised, an attack can be constructed 
that successfully attacks that variant. Pointer 
obfuscation techniques, memory address space 
randomization, and instruction set randomization have 
all been demonstrated to be vulnerable to remote 
attacks [55, 58, 64].  Further, the diversification secret 
may be compromised through side channels, 
insufficient entropy, or insider attacks.  

Our work uses artificial diversity in a new way that 
does not depend on keeping secrets: instead of 
diversifying individual systems, we construct a single 
system containing multiple variants designed to have 
disjoint exploitation sets. Figure 1 illustrates our 

framework. We refer to the entire server as an N-variant 
system. The system shown is a 2-variant system, but 
our framework generalizes to any number of variants. 
The polygrapher takes input from the client and copies 
it to all the variants. The original server process P is 
replaced with the two variants, P0 and P1. The variants 
maintain the client-observable behavior of P on all 
normal inputs. They are, however, artificially 
diversified in a way that makes them behave differently 
on abnormal inputs that correspond to an attack of a 
certain class. The monitor observes the behavior of the 
variants to detect divergences which reveal attacks. 
When a divergence is detected, the monitor restarts the 
variants in known uncompromised states. 

As a simple example, suppose P0 and P1 use disjoint 
memory spaces such that any absolute memory address 
that is valid in P0 is invalid in P1, and vice versa. Since 

Server

Input
from 

Client

P0

Polygrapher

P1

Output 
to

Client

Monitor

 
Figure 1. N-Variant System Framework. 
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the variants are transformed to provide the same 
semantics regardless of the memory space used, the 
behavior on all normal inputs is identical (assuming 
deterministic behavior, which we address in Section 5). 
However, if an exploit uses an absolute memory 
address directly, it must be an invalid address on one of 
the two variants. The monitor can easily detect the 
illegal memory access on the other variant since it is 
detected automatically by the operating system. When 
monitoring is done at the system call level, as in our 
prototype implementation, the attack is detected before 
any external state is modified or output is returned to 
the attacker.  

The key insight behind our approach is that in order for 
an attacker to exploit a vulnerability in P, a pathway 
must exist on one of the variants that exploits the 
vulnerability without producing detectably anomalous 
behavior on any of the other variants. If no such 
pathway exists, there is no way for the attacker to 
construct a successful attack, even if the attacker has 
complete knowledge of the variants. Removing the 
need to keep secrets means we do not need to be 
concerned with probing or guessing attacks, or even 
with attacks that take advantage of insider information. 

Our key contributions are:  

1. Introducing the N-variant systems framework 
that uses automated diversity techniques to 
provide high assurance security properties 
without needing to keep any secrets. 

2. Developing a model for reasoning about 
N-variant systems including the definition of the 
normal equivalence and detection properties 
used to prove security properties of an ideal 
N-variant system (Section 3). 

3. Identifying two example techniques for 
providing variation in N-variant systems: the 
memory address partitioning technique 
(introduced above) that detects attacks that 
involve absolute memory references and the 
instruction tagging technique that detects 
attempts to execute injected code (Section 4). 

4. Describing a Linux kernel system 
implementation and analyzing its performance 
(Section 5).  

In this paper we do not address recovery but consider it 
to be a successful outcome when our system transforms 
an attack that could compromise privacy and integrity 
into an attack that at worst causes a service shutdown 
that denies service to legitimate users. It has not 

escaped our attention, however, that examining 
differences between the states of the two variants at the 
point when an attack is detected provides some 
intriguing recovery possibilities.  Section 6 speculates 
on these opportunities and other possible extensions to 
our work. 

2. Related Work 

There has been extensive work done on eliminating 
security vulnerabilities and mitigating attacks.  Here, 
we briefly describe previous work on other types of 
defenses and automated diversity, and summarize 
related work on redundant processing and design 
diversity frameworks.  

Other defenses.  Many of the specific vulnerabilities 
we address have well known elimination, mitigation 
and disruption techniques. Buffer overflows have been 
widely studied and numerous defenses have been 
developed including static analysis to detect and 
eliminate the vulnerabilities [66, 67, 39, 23], program 
transformation and dynamic detection techniques [19, 
5, 30, 45, 49, 57] and hardware modifications [38, 40, 
41, 64]. There have also been several defenses proposed 
for string format vulnerabilities [56, 20, 63, 47].  Some 
of these techniques can mitigate specific classes of 
vulnerabilities with less expense and performance 
overhead than is required for our approach. Specific 
defenses, however, only prevent a limited class of 
specific vulnerabilities. Our approach is more general; 
it can mitigate all attacks that depend on particular 
functionality such as injecting code or accessing 
absolute addresses.  

More general defenses have been proposed for some 
attack classes.  For example, no execute pages (as 
provided by OpenBSD’s W^X and Windows XP 
Service Pack 2) prevent many code injection attacks 
[2], dynamic taint analysis tracks information flow to 
identify memory corruption attacks [43], and control-
flow integrity can detect attacks that corrupt an 
application to follow invalid execution paths [1]. 
Although these are promising approaches, they are 
limited to particular attack classes. Our framework is 
more general in the sense that we can construct defense 
against any attacker capability that can be varied across 
variants in an N-variant system. 

Automated diversity. Automated diversity applies 
transformations to software to increase the difficulty an 
attacker will face in exploiting a security vulnerability 
in that software.  Numerous transformation techniques 
have been proposed including rearranging memory [26, 
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8, 69, 25], randomizing system calls [17], and 
randomizing the instruction set [6, 35]. Our work is 
complementary to work on producing diversity; we can 
incorporate many different sources of variation as long 
as variants are constructed carefully to ensure the 
disjointedness required by our framework. A major 
advantage of the N-variant systems approach is that we 
do not rely on secrets for our security properties. This 
means we can employ diversification techniques with 
low entropy, so long as the transformations are able to 
produce variants with disjoint exploitation sets.  
Holland, Lim, and Seltzer propose many low entropy 
diversification techniques including number 
representations, register sets, stack direction, and 
memory layout [31]. In addition, our approach is not 
vulnerable to the type of secret-breaking attacks that 
have been demonstrated against secret-based diversity 
defenses [55, 58, 64].  

O’Donnell and Sethu studied techniques for distributing 
diversity at the level of different software packages in a 
network to mitigate spreading attacks [44]. This can 
limit the ability of a worm exploiting a vulnerability 
present in only one of the software packages to spread 
on a network. Unlike our approach, however, even at 
the network level an attacker who discovers 
vulnerabilities in more than one of the software 
packages can exploit each of them independently. 

Redundant execution. The idea of using redundant 
program executions for various purposes is not a new 
one.  Architectures involving replicated processes have 
been proposed as a means to aid debugging, to provide 
fault tolerance, to improve dependability, and more 
recently, to harden vulnerable services against attacks.  

The earliest work to consider running multiple variants 
of a process of which we are aware is Knowlton’s 1968 
paper [37] on a variant technique for detecting and 
localizing programming errors. It proposed 
simultaneously executing two programs which were 
logically equivalent but assembled differently by 
breaking the code into fragments, and then reordering 
the code fragments and data segments with appropriate 
jump instructions inserted between code fragments to 
preserve the original program semantics.  The CPU 
could run in a checking mode that would execute both 
programs in parallel and verify that they execute 
semantically equivalent instructions.  The variants they 
used did not provide any guarantees, but provided a 
high probability of detecting many programming errors 
such as out-of-range control transfers and wild memory 
fetches. 

More recently, Berger and Zorn proposed a redundant 
execution framework with multiple replicas each with a 
different randomized layout of objects within the heap 
to provide probabilistic memory safety [7].  Since there 
is no guarantee that there will not be references at the 
same absolute locations, or reachable through the same 
relative offsets, their approach can provide only 
probabilistic expectations that a memory corruption will 
be detected by producing noticeably different behavior 
on the variants. Their goals were to enhance reliability 
and availability, rather than to detect and resist attacks. 
Consequently, when variations diverge in their 
framework, they allow the agreeing replicas to continue 
based on the assumption that the cause of the 
divergence in the other replicas was due a memory flaw 
rather than a successful attack. Their replication 
framework only handles processes whose I/O is through 
standard in/out, and only a limited number of system 
calls are caught in user space to ensure all replicas see 
the same values.  Since monitoring is only on the 
standard output, a compromised replica could be 
successfully performing an attack and, as long as it does 
not fill up its standard out buffer, the monitor would not 
notice. The key difference between their approach and 
ours, is that their approach is probabilistic whereas our 
variants are constructed to guarantee disjointedness 
with respect to some property, and thereby can provide 
guarantees of invulnerability to particular attack 
classes. A possible extension to our work would 
consider variations providing probabilistic protection, 
such as the heap randomization technique they used, to 
deal with attack classes for which disjointedness is 
infeasible. 

Redundant processing of the same instruction stream by 
multiple processors has been used as a way to provide 
fault-tolerance by Stratus [68] and Tandem [32] 
computers.  For example, Integrity S2 used triple 
redundancy in hardware with three synchronized 
identical processors executing the same instructions 
[32]. A majority voter selects the majority output from 
the three processors, and a vote analyzer compares the 
outputs to activate a failure mode when a divergence is 
detected. This type of redundancy provides resilience to 
hardware faults, but no protection against malicious 
attacks that exploit vulnerabilities in the software, 
which is identical on all three processors.  Slipstream 
processors are an interesting variation of this, where 
two redundant versions of the instruction stream 
execute, but instructions that are dynamically 
determined to be likely to be unnecessary are removed 
from the first stream which executes speculatively [60].  
The second stream executes behind the first stream, and 
the processor detects inconsistencies between the two 
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executions.  These deviations either indicate false 
predications about unnecessary computations (such as a 
mispredicted branch) or hardware faults. 

The distributed systems community has used active 
replication to achieve fault tolerance [9, 10, 16, 18, 50]. 
With active replication, all replicas are running the 
same software and process the same requests. Unlike 
our approach, however, active replication does nothing 
to hide design flaws in the software since all replicas 
are running the same software. To mitigate this 
problem, Schneider and Zhou have suggested proactive 
diversity, a technique for periodically randomizing 
replicas to justify the assumption that server replicas 
fail independently and to limit the window of 
vulnerability in which replicas are susceptible to the 
same exploit [51]. Active replication and N-variant 
systems are complementary approaches. Combining 
them can provide the benefits of both approaches with 
the overhead and costs associated with either approach 
independently. 

Design diversity frameworks. The name N-variant 
systems is inspired by, but fundamentally different 
from, the technique known as N-version programming 
[3, 14]. The N-version programming method uses 
several independent development groups to develop 
different implementations of the same specification 
with the hope that different development groups will 
produce versions without common faults. The use of N-
version programming to help with system security was 
proposed by Joseph [33]. He analyzed design diversity 
as manifest in N-version programming to see whether it 
could defeat certain attacks and developed an analogy 
between faults in computing systems that might affect 
reliability and vulnerabilities in computer systems that 
might affect security. He argued that N-version 
programming techniques might allow vulnerabilities to 
be masked.  However, N-version programming 
provides no guarantee that the versions produced by 
different teams will not have common flaws. Indeed, 
experiments have shown that common flaws in 
implementations do occur [36]. In our work, program 
variants are created by mechanical transformations 
engineered specifically to differ in particular ways that 
enable attack detection. In addition, our variants are 
produced mechanically, so the cost of multiple 
development teams is avoided.   

Three recent projects [46, 62, 28] have explored using 
design diversity in architectures similar to the one we 
propose here in which the outputs or behaviors of two 
diverse implementations of the same service (e.g., 
HTTP servers Apache on Linux and IIS on Windows) 

are compared and differences above a set threshold 
indicate a likely attack. The key difference between 
those projects and our work is that whereas they use 
diverse available implementations of the same service, 
we use techniques to artificially produce specific kinds 
of variation. The HACQIT project [34, 46] deployed 
two COTS web servers (IIS running on Windows and 
Apache running on Linux) in an architecture where a 
third computer forwarded all requests to both servers 
and compared their responses. A divergence was 
detected when the HTTP status code differed, hence 
divergences that caused the servers to modify external 
state differently or produce different output pages 
would not be detected. The system described by Totel, 
Majorczyk, and Mé extended this idea to compare the 
actual web page responses of the two servers [62]. 
Since different servers do not produce exactly the same 
output on all non-attack requests because of 
nondeterminism, design differences in the servers, and 
host-specific properties, they developed an algorithm 
that compares a set of server responses to determine 
which divergences are likely to correspond to attacks 
and which are benign. The system proposed by Gao, 
Reiter, and Song [28] deployed multiple servers in a 
similar way, but monitored their behavior using a 
distance metric that examined the sequence of system 
calls each server made to determine when the server 
behaviors diverged beyond a threshold amount.  

All of these systems use multiple available 
implementations of the same service running on 
isolated machines and compare the output or aspects of 
the behavior to notice when the servers diverged. They 
differ in their system architectures and in how 
divergences are recognized. The primary advantage of 
our work over these approaches is the level of 
assurance automated diversity and monitoring can 
provide over design diversity. Because our system takes 
advantage of knowing exactly how the variants differ, 
we can make security claims about large attack classes. 
With design diversity, security claims depend on the 
implementations being sufficiently different to diverge 
noticeably on the attack (and functionality claims 
depend on the behaviors being sufficiently similar not 
exceed the divergence threshold on non-attack inputs). 
In addition, these approaches can be used only when 
diverse implementations of the same service are 
available. For HTTP servers, this is the case, but for 
custom servers the costs of producing a diverse 
implementation are prohibitive in most cases. Further, 
even though many HTTP servers exist, most advanced 
websites take advantages of server-specific 
functionality (such as server-side includes provided by 
Apache), so would not work on an alternate server. 
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Design diversity approaches offer the advantage that 
they may be able to detect attacks that are at the level of 
application semantics rather than low-level memory 
corruption or code injection attacks that are better 
detected by artificial diversity. In Section 6, we 
consider possible extensions to our work that would 
combine both approaches to provide defenses against 
both types of attacks. 

3. Model 

Our goal is to show that for all attacks in a particular 
attack class, if one variant is compromised by a given 
attack, another variant must exhibit divergent behavior 
that is detected by the monitor. To show this, we 
develop a model of execution for an N-variant system 
and define two properties the variant processes must 
maintain to provide a detection guarantee. 

We can view an execution as a possibly infinite 
sequence of states: [S0, S1, …]. In an N-variant system, 
the state of the system can be represented using a tuple 
of the states of the variants (for simplicity, this 
argument assumes the polygrapher and monitor are 
stateless; in our implementation, they do maintain some 
state but we ignore that in this presentation). Hence, an 
execution of an N-variant system is a sequence of state-
tuples where St,v represents the state of variant v at step 
t: [<S0,0, S0,1, … S0,N-1>, <S1,0, S1,1, … S1,N-1>, … ].   

Because of the artificial variation, the concrete state of 
each variant differs. Each variant has a canonicalization 
function, Cv, that maps its state to a canonical state that 
matches the corresponding state for the original 
process. For example, if the variation alters memory 
addresses, the mapping function would need to map the 
variant’s altered addresses to canonical addresses. 
Under normal execution, at every execution step the 
canonicalized states of all variants are identical to the 
original program state:  

∀t ≥ 0, 0 ≤ v < N, 0 ≤ w < N:   
Cv (St, v) = Cw  (St, w) = St. 

Each variant has a transition function, Tv, that takes a 
state and an input and produces the next state. The 
original program, P, also has a transition function, T. 
The set of possible transitions can be partitioned into 
consistent transitions and aberrant transitions. 
Consistent transitions take the system from one normal 
state to another normal state; aberrant transitions take 
the system from a normal state to a compromised state. 
An attack is successful if it produces an aberrant 
transition without detection. Our goal is to detect all 
aberrant transitions. 

We partition possible variant states into three sets: 
normal, compromised, and alarm. A variant in a normal 
state is behaving as intended. A variant in a 
compromised state has been successfully compromised 
by a malicious attack. A variant in an alarm state is 
anomalous in a way that is detectable by the monitor. 
We aim to guarantee that the N-variant system never 
enters a state-tuple that contains one or more variants in 
comprised states without any variants in alarm states. 
To establish this we need two properties: normal 
equivalence and detection. 

Normal equivalence. The normal equivalence property 
is satisfied if the N-variant system synchronizes the 
states of all variants. That is, whenever all variants are 
in normal states, they must be in states that correspond 
to the same canonical state. For security, it is sufficient 
to show the variants remain in equivalent states. For 
correctness, we would also like to know the canonical 
state of each of the variants is equivalent to the state of 
the original process. 

We can prove the normal equivalence property 
statically using induction:  

1. Show that initially all variants are in the same 
canonical state: ∀ 0 ≤ v < N:  Ci (S0, v) = S0. 

2. Show that every normal transition preserves the 
equivalence when the system is initially in a 
normal state:  

   ∀S ∈ Normal, 0 ≤ v < N, Sv  
                where Cv (Sv) = S, p ∈ Inputs:  
       Cv (Tv (Sv, p)) = T (S, p). 

Alternatively, we can establish it dynamically by 
examining the states of the variants and using the 
canonicalization function to check the variants are in 
equivalent states after every step. In practice, neither a 
full static proof nor a complete dynamic comparison is 
likely to be feasible for real systems. Instead, we argue 
that our implementation provides a limited form of 
normal equivalence using a combination of static 
argument and limited dynamic comparison, as we 
discuss in Section 5. 

Detection. The detection property guarantees that all 
attacks in a certain class will be detected by the 
N-variant system as long as the normal equivalence 
property is satisfied. To establish the detection proper-
ty, we need to know that any input that causes one 
variant to enter a compromised state must also cause 
some other variant to enter an alarm state. Because of 
the normal equivalence property, we can assume the 
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variants all are in equivalent states before processing 
this input. Thus, we need to show:  

∀S ∈ Normal, 0  ≤ v < N,  Sv where Cv (Sv) = S,  
∀p ∈ Inputs:    
      Tv (Sv, p) ∈ Compromised ⇒  
          ∃w such that Tw (Sw, p) ∈ Alarm and Cw (Sw) = S 

If the detection property is established, we know that 
whenever one of the variants enters a compromised 
state, one of the variants must enter an alarm state. An 
ideal monitor would instantly detect the alarm state and 
prevent all the other variants from continuing. This 
would guarantee that the system never operates in a 
state in which any variant is compromised.  

In practice, building such a monitor is impossible since 
we cannot keep the variants perfectly synchronized or 
detect alarm states instantly. However, we can 
approximate this behavior by delaying any external 
effects (including responses to the client) until all 
variants have passed a critical point. This keeps the 
variants loosely synchronized, and approximates the 
behavior of instantly terminating all other variants 
when one variant encounters an alarm state. It leaves 
open the possibility that a compromised variant could 
corrupt the state of other parts of the system (including 
the monitor and other variants) before the alarm state is 
detected. An implementation must use isolation 
mechanisms to limit this possibility. 

4. Variations 

Our framework works with any diversification 
technique that produces variants different enough to 
provide detection of a class of attack but similar enough 
to establish a normal equivalence property. The 
variation used to diversify the variants determines the 
attack class the N-variant system can detect. The 
detection property is defined by the class of attack we 
detect, so we will consider attack classes, such as 
attacks that involve executing injected instructions, 
rather than vulnerability classes such as buffer overflow 
vulnerabilities.  

Next, we describe two variations we have implemented: 
address space partitioning and instruction set tagging. 
We argue (informally) that they satisfy both the normal 
equivalence property and the detection condition for 
important classes of attacks. The framework is general 
enough to support many other possible variations, 
which we plan to explore in future work. Other possible 
variations that could provide useful security properties 
include varying memory organization, file naming, 

scheduling, system calls, calling conventions, 
configuration properties, and the root user id. 

4.1 Address Space Partitioning  

The Introduction described an example variation where 
the address space is partitioned between two variants to 
disrupt attacks that rely on absolute addresses. This 
simple variation does not prevent all memory 
corruption attacks since some attacks depend only on 
relative addressing, but it does prevent all memory 
corruption attacks that involve direct references to 
absolute addresses. Several common vulnerabilities 
including format string [56, 54], integer overflow, and 
double-free [24] may allow an attacker to overwrite an 
absolute location in the target’s address space. This 
opportunity can be exploited to give an attacker control 
of a process, for example, by modifying the Global 
Offset Table [24] or the .dtors segment of an ELF 
executable [48]. Regardless of the vulnerability 
exploited and the targeted data structure, if the attack 
depends on loading or storing to an absolute address it 
will be detected by our partitioning variants. Since the 
variation alters absolute addresses, it is necessary that 
the original program does not depend on actual memory 
addresses (for example, using the value of a pointer 
directly in a decision). Although it is easy to construct 
programs that do not satisfy this property, most sensible 
programs should not depend on actual memory 
addresses. 

Detection. Suppose P0 only uses addresses whose high 
bit is 0 and P1 only uses addresses whose high bit is 1. 
We can map the normal state of P0 and P1 to equivalent 
states using the identity function for C0 and a function 
that flips the high bit of all memory addresses for C1 (to 
map onto the actual addresses used by P, more complex 
mapping functions may be needed). The transition 
functions, T0 and T1 are identical; the generated code is 
what makes things different since a different address 
will be referenced in the generated code for any 
absolute address reference. If an attack involves 
referencing an absolute address, the attacker must 
choose an address whose high bit is either a 0 or 1. If it 
is a 0, then P0 may transition to a compromised state, 
but P1 will transition to an alarm state when it attempts 
to access a memory address outside P1’s address space. 
In Unix systems, this alarm state is detected by the 
operating system as a segmentation fault. Conversely, if 
the attacker chooses an address whose high bit is 1, P1 
may be compromised but P0 must enter an alarm state. 
In either case, the monitor detects the compromise and 
prevents any external state modifications including 
output transmission to the client.  
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Our detection argument relies on the assumption that 
the attacker must construct the entire address directly. 
For most scenarios, this assumption is likely to be valid. 
For certain vulnerabilities on platforms that are not 
byte-aligned, however, it may not be. If the attacker is 
able to overwrite an existing address in the program 
without overwriting the high bit, the attacker may be 
able to construct an address that is valid in both 
variants. Similarly, if an attacker can corrupt a value 
that is subsequently used with a transformed absolute 
address in an address calculation, the detection property 
is violated. As with relative attacks, this indirect 
memory attacks would not be detected by this variation. 

Normal equivalence. We have two options for 
establishing the normal equivalence property: we can 
check it dynamically using the monitor, or we can 
prove it statically by analyzing the variants. A pure 
dynamic approach is attractive for security assurance 
because of its simplicity but impractical for 
performance-critical servers. The monitor would need 
to implement C0 and C1 and compute the canonical 
states of each variant at the end of each instruction 
execution. If the states match, normal equivalence is 
satisfied. In practice, however, this approach is likely to 
be prohibitively expensive. We can optimize the check 
by limiting the comparison to the subset of the 
execution state that may have changed and only 
checking the state after particular instructions, but the 
overhead of checking the states of the variants after 
every step will still be unacceptable for most services. 

The static approach requires proving that for every 
possible normal state, all normal transitions result in 
equivalent states on the two variants. This property 
requires that no instruction in P can distinguish between 
the two variants. For example, if there were a 
conditional jump in P that depended on the high bit of 
the address of some variable, P0 and P1 would end up in 
different states after executing that instruction. An 
attacker could take advantage of such an opportunity to 
get the variants in different states such that an input that 
transitions P0 to a compromised state does not cause P1 
to reach an alarm state. For example, if the divergence 
is used to put P0 in a state where the next client input 
will be passed to a vulnerable string format call, but the 
next client input to P1 is processed harmlessly by some 
other code, an attacker may be able to successfully 
compromise the N-variant system. A divergence could 
also occur if some part of the system is 
nondeterministic, and the operating environment does 
not eliminate this nondeterminism (see Section 5). 
Finally, if P is vulnerable to some other class of attack, 
such as code injection, an attacker may be able to alter 

the transition functions T0 and T1 in a way that allows 
the memory corruption attack to be exploited 
differently on the two variants to avoid detection (of 
course, an attacker who can inject code can already 
compromise the system in arbitrary ways). 

In practice, it will not usually be possible to completely 
establish normal equivalence statically for real systems 
but rather we will use a combination of static and 
dynamic arguments, along with assumptions about the 
target service. A combination of static and dynamic 
techniques for checking equivalence may be able to 
provide higher assurance without the overhead 
necessary for full dynamic equivalence checking. Our 
prototype implementation checks equivalence 
dynamically at the level of system calls, but relies on 
informal static arguments to establish equivalence 
between them. 

Implementation. To partition the address space, we 
vary the location of the application data and code 
segments. The memory addresses used by P0 and P1 are 
disjoint: any data address that is valid for P0 is invalid 
for P1, and vice versa. We use a linker script to create 
the two variants.  Each variant loads both the code and 
data segments of the variants at different starting 
addresses from the other variant. To ensure that their 
sets of valid data memory addresses are disjoint, we use 
ulimit to limit the size of P0’s data segment so it cannot 
grow to overlap P1’s address space.  

4.2 Instruction Set Tagging 

Whereas partitioning the memory address space 
disrupts a class of memory corruption attacks, partition-
ing the instruction set disrupts code injection attacks. 
There are several possible ways to partition the 
instruction set. 

One possibility would be to execute the variants on 
different processors, for example one variant could run 
on an x86 and the other on a PowerPC. Establishing the 
security of such an approach would be very difficult, 
however. To obtain the normal equivalence property we 
would need a way of mapping the concrete states of the 
different machines to a common state. Worse, to obtain 
the detection property, we would need to prove that no 
string of bits that corresponds to a successful malicious 
attack on one instruction set and a valid instruction 
sequence on the other instruction set. Although it is 
likely that most sequences of malicious x86 instructions 
contain an invalid PowerPC instruction, it is certainly 
possible for attackers to design instruction sequences 
that are valid on both platforms (although we are not 
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aware of any programs that do this for the x86 and 
PowerPC, Sjoerd Mullender and Robbert van Renesse 
won the 1984 International Obfuscated C Code Contest 
with an entry that replaced main with an array of bytes 
that was valid machine code for both the Vax and PDP-
11 but executed differently on each platform [35]).  

Instead, we use a single instruction set but prepend a 
variant-specific tag to all instructions. The 
diversification transformation takes P and inserts the 
appropriate tag bit before each instruction to produce 
each variant.  

Detection. The variation detects any attack that 
involves executing injected code, as long as the 
mechanism used to inject code involves injecting 
complete instructions. If memory is bit-addressable, an 
attacker could overwrite just the part of the instruction 
after the tag bit, thereby changing an existing 
instruction while preserving the original tag bit. If the 
attacker can inject the intended code in memory, and 
then have the program execute code already in the 
executable that transforms the injected memory (for 
example, by XORing each byte with a constant that is 
different in the two variants), then it is conceivable that 
an attacker could execute an indirect code injection 
attack where the code is transformed differently on the 
two variants before executing to evade the detection 
property. For all known realistic code injection attacks, 
neither of these is considered a serious risk.  

Normal equivalence. The only difference between the 
two variants is the instruction tag, which has no effect 
on instruction execution. The variants could diverge, 
however, if the program examines its own instructions 
and makes decisions that depend on the tag. It is 
unlikely that a non-malicious program would do this. 
As with the memory partitioning, if the instruction tags 
are visible to the executing process an attacker might be 
able to make them execute code that depends on the 
instruction tags to cause the variants to diverge before 
launching the code injection attack on one of the 
variants. To prevent this, we need to store the tagged 
instructions in memory that is not readable to the 
executing process and remove the tags before those 
instructions reach the processor. 

Implementation. To implement instruction set tagging, 
we use a combination of binary rewriting before 
execution and software dynamic translation during 
execution. We use Diablo [61, 22], a retargetable binary 
rewriting framework, to insert the tags. Diablo provides 
mechanisms for modifying an x86 binary in ELF 
format. We use these to insert the appropriate variant-

specific tag before every instruction. For simplicity, we 
use a full byte tag even though a single bit would 
suffice for two variants. There is no need to keep the 
tags secret, just that they are different; we use 
10101010 and 01010101 for the A and B variant tags.  

At run-time, the tags are checked and removed before 
instructions reach the processor. This is done using 
Strata, a software dynamic translation tool [52, 53]. 
Strata and other software dynamic translators [4, 11] 
have demonstrated that it is possible to implement 
software dynamic translation without unreasonable 
performance penalty. In our experiments (Section 5), 
Strata’s overhead is only a few percent. The Strata VM 
mediates application execution by examining and 
translating instructions before they execute on the host 
CPU. Translated instructions are placed in the fragment 
cache and then executed directly on the host CPU. 
Before switching to the application code, the Strata VM 
uses mprotect to protect critical data structures 
including the fragment cache from being overwritten by 
the application. At the end of a translated block, Strata 
appends trampoline code that will switch execution 
back to the Strata VM, passing in the next application 
PC so that the next fragment can be translated and 
execution will continue. We implement the instruction 
set tagging by extending Strata’s instruction fetch 
module. The modified instruction fetch module checks 
that the fetched instruction has the correct tag for this 
variant; if it does not, a security violation is detected 
and execution terminates. Otherwise, it removes the 
instruction tag before placing the actual instruction in 
the fragment cache. The code executing on the host 
processor contains no tags and can execute normally. 

5. Framework Implementation 

Implementing an N-variant system involves generating 
variants such as those described in Section 4 as well as 
implementing the polygrapher and monitor. The trusted 
computing base comprises the polygrapher, monitor 
and mechanisms used to produce the variants, as well as 
any operating system functionality that is common 
across the variants. An overriding constraint on our 
design is that it be fully automated. Any technique that 
requires manual modification of the server to create 
variants or application-specific monitoring would 
impose too large a deployment burden to be used 
widely. To enable rapid development, our 
implementations are entirely in software. Hardware im-
plementations would have security and performance 
advantages, especially in monitoring the instruction 
tags. Furthermore, placing monitoring as close as 
possible to the processor eliminates the risk that an 
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attacker can exploit a vulnerability in the monitoring 
mechanism to inject instructions between the 
enforcement mechanism and the processor. 

The design space for N-variant systems 
implementations presents a challenging trade-off 
between isolation of the variants, polygrapher, and 
monitor and the need to keep the variant processes 
synchronized enough to establish the normal 
equivalence property. The other main design decision is 
the granularity of the monitoring. Ideally, the complete 
state of each variant would be inspected after each 
instruction. For performance reasons, however, we can 
only observe aspects of the state at key execution 
points.  Incomplete monitoring means that an attacker 
may be able to exploit a different vulnerability in the 
server to violate the normal equivalence property, 
thereby enabling an attack that would have otherwise 
been detected to be carried out without detection. For 
example, an attacker could exploit a race condition in 
the server to make the variants diverge in ways that are 
not detected by the monitor. Once the variants have 
diverged, the attacker can construct an input that 
exploits the vulnerability in one variant, but does not 
produce the detected alarm state on the other variants 
because they started from different states.   

In our first proof-of-concept implementation, described 
in Section 5.1, we emphasized isolation and executed 
the variants on separate machines. This meant that any 
nondeterminism in the server program or aspects of the 
host state visible to the server program that differed 
between the machines could be exploited by an attacker 
to cause the processes to diverge and then allow a 
successful attack. It also meant the monitor only 
observed the outputs produced by the two variants that 
would be sent over the network. This enabled certain 
attacks to be detected, but meant a motivated attacker 
could cause the states to diverge in ways that were not 
visible from the output (such as corrupting server data) 
but still achieved the attacker’s goals. 

Our experience with this implementation led us to 
conclude that a general N-variant systems framework 
needed closer integration of the variant processes to 
prevent arbitrary divergences. We developed such a 
framework as a kernel modification that allows multiple 
variants to run on the same platform and normal 
equivalence to be established at system call granularity. 
This eliminates most causes of nondeterminism and 
improves the performance of the overall system. 
Section 5.2 describes our Linux kernel implementation, 
and Section 5.3 presents performance results running 
Apache variants on our system.  

5.1 Proof-of-Concept Implementation 

In our proof-of-concept implementation, the variants 
are isolated on separate machines and the polygrapher 
and monitor are both implemented by the nvd process 
running on its own machine. We used our 
implementation to protect both a toy server we 
constructed and Apache. In order for our approach to 
work in practice it is essential that no manual 
modification to the server source code is necessary. 
Hence, each server variant must execute in a context 
where it appears to be interacting normally with the 
client. We accomplish this by using divert sockets to 
give each variant the illusion that it is interacting 
directly with a normal client. To implement the 
polygrapher we use ipfw, a firewall implementation for 
FreeBSD [27] with a rule that redirects packets on port 
80 (HTTP server) to our nvd process which adjusts the 
TCP sequence numbers to be consistent with the 
variant’s numbering. Instead of sending responses 
directly to the client, the variant’s responses are 
diverted back to nvd, which buffers the responses from 
all of the variants. The responses from P0 are 
transmitted back to the client only if a comparably long 
response is also received from the other variants. 
Hence, if any variant crashes on a client input, the 
response is never sent to the client and nvd restarts the 
server in a known uncompromised state. 

We tested our system by using it to protect a toy server 
we constructed with a simple vulnerability and Apache, 
and attempted to compromise those servers using pre-
viously known exploits as well as constructed exploits 
designed to attack a particular variant. Exploit testing 
does not provide any guarantees of the security of our 
system, of course, but it does demonstrate that the 
correct behavior happens under the tested conditions to 
increase our confidence in our approach and 
implementation. Our toy server contained a contrived 
format string vulnerability, and we developed an exploit 
that used that vulnerability to write to an arbitrary 
memory address. The exploit could be customized to 
work against either variation, but against the N-variant 
system both versions would lead to one of the variants 
crashing. The monitor detects the crash and prevents 
compromised outputs from reaching the client. We also 
tested an Apache server containing a vulnerable 
OpenSSL implementation (before 0.9.6e) that contained 
a buffer overflow vulnerability that a remote attacker 
could exploit to inject code [13]. When instruction set 
tagging is used, the exploit is disrupted since it does not 
contain the proper instruction tags in the injected code.  
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We also conducted some performance measurements on 
our 2-variant system with memory address partitioning. 
The average response latency for HTTP requests 
increased from 0.2ms for the unmodified server to 
2.9ms for the 2-variant system.  

The proof-of-concept implementation validated the N-
variant systems framework concept, but did not provide 
a practical or secure implementation for realistic 
services. Due to isolation of the variants, various non-
attack inputs could lead to divergences between the 
variants caused by differences between the hosts. For 
example, if the output web page includes a time stamp 
or host IP address, these would differ between the 
variants. This means false positives could occur when 
the monitor observes differences between the outputs 
for normal requests. Furthermore, a motivated attacker 
could take advantage of any of these differences to 
construct an attack that would compromise one of the 
variants without leading to a detected divergence. 

5.2 Kernel Implementation  

The difficulties in eliminating nondeterminism and 
providing finer grain monitoring with the isolated 
implementation, as well as its performance results, 
convinced us to develop a kernel implementation of the 
framework by modifying the Linux 2.6.11 kernel. In 
this implementation, all the variants run on the same 
platform, along with the polygrapher and monitor. We 
rely on existing operating system mechanisms to 
provide isolation between the variants, which execute 
as separate processes. 

We modified the kernel data structures to keep track of 
variant processes and implemented wrappers around 

system calls. These wrappers implement the 
polygraphing functionality by wrapping input system 
calls so that when both variants make the same input 
system call, the actual input operation is performed 
once and the same data is sent to all variants. They 
provide the monitoring functionality by checking that 
all variants make the same call with equivalent 
arguments before making the actual system call.  

This system call sharing approach removes nearly all of 
the causes of nondeterminism that were problematic in 
the proof-of-concept implementation. By wrapping the 
system calls, we ensure that variants receive identical 
results from all system calls. The remaining cause of 
nondeterminism is due to scheduling differences, in 
particular in handling signals. We discuss these 
limitations in Section 6. 

In order to bring an N-variant system into execution we 
created two new system calls: n_variant_fork, and 
n_variant_execve. The program uses these system calls 
similarly to the way a shell uses fork/execve to bring 
processes into execution. The n_variant_fork system 
call forks off the variants, however instead of creating a 
single child process it creates one process per variant. 
The variants then proceed to call n_variant_execve, 
which will cause each of the variants to execute their 
own diversified binary of the server. Note that our 
approach requires no modification of an existing binary 
to execute it within an N-variant system; we simply 
invoke a shell command that takes the pathnames of 
variant binaries as parameters and executes 
n_variant_execve.  

Next, we provide details on the system call wrappers 
that implement the polygraphing and monitoring. The 

ssize_t sys_read(int fd, const void *buf, size_t count) { 
   if (!hasSibling (current)) { make system call normally } // not a variant process 
   else {  
      record that this variant process entered call 
      if (!inSystemCall (current->sibling)) { // this variant is first 
          save parameters 
          sleep // sibling will wake us up 
          get result and copy *buf data back into address space 
          return result; 
      } else if (currentSystemCall (current->sibling) == SYS_READ) { // this variant is second, sibling waiting 
          if (parameters match) { // what it means to “match” depends on variation and system call 
              perform system call 
              save result and data in kernel buffer 
              wake up sibling 
              return result; 
          } else { DIVERGENCE ERROR! } // sibling used different parameters 
      } else { DIVERGENCE ERROR! } } } // sibling is in a different system call 

Figure 2. Typical shared system call wrapper. 
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Linux 2.6.11 kernel provides 267 system calls. We 
generalize them into three categories based on the type 
of wrapper they need: shared system calls, reflective 
system calls, and dangerous system calls.   

Shared System Calls. For system calls that interact 
with external state, including I/O system calls, the 
wrapper checks that all variants make equivalent calls, 
makes the actual call once, and sends the output to all 
variants, copying data into each of the variants address 
space if necessary. Figure 2 shows pseudocode for a 
shared call, in this case the read system call. The actual 
wrappers are generated using a set of preprocessor 
macros we developed to avoid duplicating code. The 
first if statement checks whether this process is part of 
an N-variant system. If not, the system call proceeds 
normally. Hence, a single platform can run both normal 
and N-variant processes. If the process is a variant 
process, it records that it has entered this system call 
and checks if its sibling variant has already entered a 
system call. If it has not, it saves the parameters and 
sleeps until the other variant wakes it up. Otherwise, it 
checks that the system call and its parameters match 
those used by the first variant to make the system call. 
If they match, the actual system call is made. The result 
is copied into a kernel buffer, and the sibling variant 
process (which reached this system call first and went 
to sleep) is awoken. The sibling process copies the 
result from the kernel buffer back into its address space 
and continues execution. 

Reflective System Calls. We consider any system call 
that observes or modifies properties of the process itself 
a reflective system call. For these calls, we need to 
ensure that all observations always return the same 
value regardless of which variant reaches the call first, 
and that all modifications to process properties are done 
equivalently on all variants. For observation-only 
reflective calls, such as getpid, we check that all 
variants make the same call, and then just make the call 
once for variant 0 and send the same result to all 
variants. This is done using wrappers similar to those 
for shared system calls, except instead of just allowing 
the last variant that reaches the call to make the actual 
system call we need to make sure that each time a 
reflective call is reached, it is executed for the same 
process. 

Another issue is raised by the system calls that create 
child processes (sys_fork, sys_vfork, and sys_clone). 
The wrappers for these calls must coordinate each 
variant’s fork and set up all the child processes as a 
child N-variant system before any of the children are 
placed on the run queue. These system calls return the 

child process’ PID. We ensure that all the parents in the 
N-variant system get the same PID (the PID of variant 
0’s child), as with the process observation system calls.  

The other type of reflective system call acts on the 
process itself. These system calls often take parameters 
given by the reflective observation system calls. In this 
case, we make sure they make the same call with the 
same parameters, but alter the parameters accordingly 
for each variant. For example, sys_wait4 takes a PID as 
an input. Each of the variants will call sys_wait4 with 
the same PID because they were all given the same 
child PID when they called sys_fork (as was required to 
maintain normal equivalence). However, each variant 
needs to clean up its corresponding child process within 
the child system. The wrapper for sys_wait4 modifies 
the PID value passed in and makes the appropriate call 
for each variant with its corresponding child PID. 
Similar issues arise with sys_kill, sys_tkill, and 
sys_waitpid. 

Finally, we have to deal with two system calls that 
terminate a process: sys_exit and sys_exit_group. A 
terminating process does not necessarily go through 
these system calls, since it may terminate by crashing. 
To ensure that we capture all process termination events 
in an N-variant system we added a monitor inside the 
do_exit function within the kernel which is the last 
function all terminating processes execute. This way, if 
a process receives a signal and exits without going 
through a system call, we will still observe this and can 
terminate the other variants. 

Dangerous System Calls. Certain calls would allow 
processes to break assumptions on which we rely. For 
example, if the process uses the execve system to run a 
new executable, this will escape the N-variant 
protections unless we can ensure that each variant 
executes a different executable that is diversified 
appropriately. Since it is unlikely we can establish this 
property, the execve wrapper just disables the system 
call and returns an error code. This did not pose 
problems for Apache, but might for other applications. 

Other examples of dangerous system calls are those for 
memory mapping (old_mmap, sys_mmap2) which map 
a portion of a file into a process’ address space. After a 
file is mapped into an address space, memory reads and 
writes are analogous to reads and writes from the file. 
This would allow an attacker to compromise one 
variant, and then use the compromised variant to alter 
the state of the uncompromised variants through the 
shared memory without detection, since no system call 
is necessary. Since many server applications (including 
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Apache) use memory mapping, simply blocking these 
system calls is not an option. Instead, we place 
restrictions on them to allow only the 
MAP_ANONYMOUS and MAP_PRIVATE options with 
all permissions and to permit MAP_SHARED mappings 
as long as write permissions are not requested.  This 
eliminates the communication channel between the 
variants, allowing memory mapping to be used safely 
by the variants. Apache runs even with these 
restrictions since it does not use other forms of memory 
mapping, but other solutions would be needed to 
support all services. 

5.3 Performance  

Table 1 summarizes our performance results. We 
measured the throughput and latency of our system 
using WebBench 5.0 [65], a web server benchmark 
using a variety of static web page requests. We ran two 
sets of experiments measuring the performance of our 
Apache server under unsaturated and saturated load 
conditions.  In both sets, there was a single 2.2GHz 
Pentium 4 server machine with 1GB RAM running 
Fedora Core 3 (2.6.11 kernel) in the six different 
configurations shown in Table 1. For the first set of 
experiences, we used a single client machine running 
one WebBench client engine. For the load experiments, 
we saturated our server using six clients each running 
five WebBench client engines connected to the same 
networks switch as the server.   

Configuration 1 is the baseline configuration: regular 
apache running on an unmodified kernel. Configuration 
2 shows the overhead of the N-variant kernel on a 
normal process. In our experiments, it was negligible; 
this is unsurprising since the overhead is only a simple 
comparison at the beginning of each wrapped system 
call. Configuration 3 is a 2-variant system running in 
our N-variant framework where the two variants differ 
in the address spaces according to the partitioning 
scheme described in Section 4.1. For the unloaded 
server, the latency observed by the client increases by 

17.6%. For the loaded server, the throughput decreases 
by 48% and the latency nearly doubles compared to the 
baseline configuration. Since the N-variant system 
executes all computation twice, but all I/O system calls 
only once, the overhead incurred reflects the cost of 
duplicating the computation, as well as the checking 
done by the wrappers. The overhead measured for the 
unloaded server is fairly low, since the process is 
primarily I/O bound; for the loaded server, the process 
becomes more compute-bound, and the approximately 
halving of throughput reflects the redundant 
computation required to run two variants. 

The instruction tagging variation is more expensive 
because of the added cost of removing and checking the 
instruction tags. Configuration 4 shows the 
performance of Apache running on the normal kernel 
under Strata with no transformation. The overhead 
imposed by Strata reduces throughput by about 10%. 
The Strata overhead is relatively low because once a 
code fragment is in the fragment cache it does not need 
to be translated again the next time it executes. Adding 
the instruction tagging (Configuration 5) has minimal 
impact on throughput  and latency. Configuration 6 
shows the performance of a 2-variant system where the 
variants are running under Strata with instruction tag 
variation. The performance impact is more than it was 
in Configuration 3 because of the additional CPU 
workload imposed by the instruction tags. For the 
unloaded server, the latency increases 28% over the 
baseline configuration; for the saturated server, the 
throughput is 37% of the unmodified server’s 
throughput. 

Our results indicate that for I/O bound services, N-
variant systems where the variation can be achieved 
with reasonable performance overhead, especially for 
variations such as the address space partitioning where 
little additional work is needed at run-time. We 
anticipate there being many other interesting variations 
of this type, such as file renaming, local memory 
rearrangement, system call number diversity, and user 

Configuration 1 2 3 4 5 6 

Description 
Unmodi

fied Apache, 
unmodified 

kernel 

Unmodi
fied Apache, 

N-variant 
kernel 

2-
variant 
system, 
address 

partitioning 

Ap
ache 

running 
under 
Strata 

Apa
che with 
instructio

n tags 

2-
variant 
system, 

instructio
n tags 

Throughput 
(MB/s) 

2.36 2.32 2.04 2.27 2.25 1.80 
Unsaturated 

Latency (ms) 2.35 2.40 2.77 2.42 2.46 3.02 
Throughput 
(MB/s) 

9.70 9.59 5.06 8.54 8.30 3.55 
Saturated 

Latency (ms) 17.65 17.80 34.20 20.30 20.58 48.30 
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id diversity. For CPU-bound services, the overhead of 
our approach will remain relatively high since all 
computation needs to be performed twice. 
Multiprocessors may alleviate some of the problem (in 
cases where there is not enough load to keep the other 
processors busy normally). Fortunately, many 
important services are largely I/O-bound today and 
trends in processor and disk performance make this 
increasingly likely in the future. 

6. Discussion 

Our prototype implementation illustrates the potential 
for N-variant systems to protect vulnerable servers from 
important classes of attacks. Many other issues remain 
to be explored, including how our approach can be 
applied to other services, what variations can be created 
to detect other classes of attacks, how an N-variant 
system can recover from a detected attack, and how 
compositions of design and artificially diversified 
variants can provide additional security properties. 

Applicability. Our prototype kernel implementation 
demonstrated the effectiveness of our approach using 
Apache as a target application.  Although Apache is a 
representative server, there are a number of things other 
servers might do that would cause problems for our 
implementation. The version of Apache used in our 
experiments on uses the fork system call to create 
separate processes to handle requests.  Each child 
process is run as an independent N-variant 
system. Some servers use user-level threading libraries 
where there are multiple threads within a single process 
invisible to our kernel monitor. This causes problems in 
an N-variant system, since the threads in the variants 
may interleave differently to produce different 
sequences of system calls (resulting in a false 
detection), or worse, interleave in a way that allows an 
attacker to exploit a race condition to carry out a 
successful attack without detection. One possible 
solution to this problem is to modify the thread 
scheduler to ensure that threads in the variants are 
scheduled identically to preserve synchronization 
between the variants.   

The asynchronous property of process signals makes it 
difficult to ensure that all variants receive a signal at the 
exact same point in each of their executions. Although 
we can ensure that a signal is sent to all the variants at 
the same time, we cannot ensure that all the variants are 
exactly at the same point within their program at that 
time. As a result, the timing of a particular signal could 
cause divergent behavior in the variants if the code 
behaves differently depending on the exact point when 

the signal is received. This might cause the variants to 
diverge even though they are not under attack, leading 
to a false positive detection. As with user-level threads, 
if we modify the kernel to provide more control of the 
scheduler we could ensure that variants receive signals 
at the same execution points. 

Another issue that limits application of our approach is 
the use of system calls we classified as dangerous such 
as execve or unrestricted use of mmap. With our 
current wrappers, a process that uses these calls is 
terminated since we cannot handle them safely in the 
N-variant framework. In some cases, more precise 
wrappers may allow these dangerous calls to be used 
safely in an N-variant system.  Some calls, however, are 
inherently dangerous since they either break isolation 
between the variants or allow them to escape the 
framework. In these situations, either some loss of 
security would need to be accepted, or the application 
would need to be modified to avoid the dangerous 
system calls before it could be run as an N-variant 
system. 

Other variations. The variations we have implemented 
only thwart attacks that require accessing absolute 
memory addresses or injecting code. For example, our 
current instruction tagging variation does not disrupt a 
return-to-libc attack (since it does not involve injecting 
code), and our address space partitioning variation 
provides no protection against memory corruption 
attacks that only use relative addressing. One goal for 
our future work is to devise variations that enable 
detection of larger classes of attack within the 
framework we have developed. We believe there are 
rich opportunities for incorporating different kinds of 
variation in our framework, although the variants must 
be designed carefully to ensure the detection and 
normal equivalence properties are satisfied.  
Possibilities include variations involving memory 
layout to prevent classes of relative addressing attacks, 
file system paths to disrupt attacks that depend on file 
names, scheduling to thwart race condition attacks, and 
data structure parameters to disrupt algorithmic 
complexity attacks [21]. 

Composition. Because of the need to satisfy the normal 
equivalence property, we cannot simply combine 
multiple variations into two variants to detect the union 
of their attack classes. In fact, such a combination risks 
compromising the security properties each variation 
would provide by itself. By combining variations more 
carefully, however, we can compose variants in a way 
that maintains the properties of the independent 
variations. To do this securely, we must ensure that, for 
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each attack class we wish to detect, there is a pair of 
variants in the system that differs only in the 
transformation used to detect that attack class. This is 
necessary to ensure that for each variation, there is a 
pair of variants that satisfy the normal equivalence 
property for that variation but differ in the varied 
property. This approach can generalize to compose n 
binary variations using n + 1 variants. More clever 
approaches may be able to establish the orthogonality 
of certain variations to allow fewer variants without 
sacrificing normal equivalence. 

Another promising direction is to combine our 
approach with design diversity approaches [46, 28, 62]. 
We could create a 3-variant system where two variants 
are Apache processes running on Linux hosts with 
controlled address space partitioning variation, and the 
third variant is a Windows machine running IIS. This 
would provide guaranteed detection of a class of low-
level memory attacks through the two controlled 
variants, as well as probabilistic detection of attacks 
that exploit high-level application semantics through 
the design variants. 

Recovery. Our modified kernel detects an attack when 
the system calls made by the variants diverge. At this 
point, one variant is in an alarm state (e.g., crashed), 
and the other variant is in a possibly compromised state. 
After detecting the attack, the monitor needs to restart 
the service in an uncompromised state. Note that the 
attack is always detected before any system call is 
executed for a compromised process; this means no 
external state has been corrupted. For a stateless server, 
the monitor can just restart all of the variants. For a 
stateful server, recovery is more difficult. One 
interesting approach is to compare the states of the 
variants after the attack is detected to determine the 
valid state. Depending on the variation used, it may be 
possible to recover a known uncompromised state from 
the state of the alarm variant, as well as to deduce an 
attack signature from the differences between the two 
variants’ states. Another approach involves adding an 
extra recovery variant that maintains a known 
uncompromised state and can be used to restart the 
other variants after an attack is detected. The recovery 
variant could be the original P, except it would be kept 
behind the normal variants. The polygrapher would 
delay sending input to the recovery variant until all of 
the regular variants process it successfully. This 
complicates the wrappers substantially, however, and 
raises difficult questions about how far behind the 
recovery variant should be. 

7. Conclusion 

Although the cryptography community has developed 
techniques for proving security properties of 
cryptographic protocols, similar levels of assurance for 
system security properties remains an elusive goal. 
System software is typically too complex to prove it has 
no vulnerabilities, even for small, well-defined classes 
of vulnerabilities such as buffer overflows. Previous 
techniques for thwarting exploits of vulnerabilities have 
used ad hoc arguments and tests to support claimed 
security properties. Motivated attackers, however, 
regularly find ways to successfully attack systems 
protected using these techniques [12, 55, 58, 64].   

Although many defenses are available for the particular 
attacks we address in this paper, the N-variant systems 
approach offers the promise of a more formal security 
argument against large attack classes and 
correspondingly higher levels of assurance. If we can 
prove that the automated diversity produces variants 
that satisfy both the normal equivalence and detection 
properties against a particular attack class, we can have 
a high degree of confidence that attacks in that class 
will be detected. The soundness of the argument 
depends on correct behavior of the polygrapher, 
monitor, variant generator and any common resources.  

Our framework opens up exciting new opportunities for 
diversification approaches, since it eliminates the need 
for high entropy variations. By removing the reliance 
on keeping secrets and providing an architectural and 
associated proof framework for establishing security 
properties, N-variant systems offer potentially 
substantial gains in security for high assurance services. 

Availability 
Our implementation is available as source code 

from http://www.nvariant.org. This website also 
provides details on the different system call wrappers. 

Acknowledgments 
We thank Anil Somayaji for extensive comments 

and suggestions; Lorenzo Cavallaro for help with the 
memory partitioning scripts; Jessica Greer for 
assistance setting up our experimental infrastructure; 
Caroline Cox, Karsten Nohl, Nate Paul, Jeff Shirley, 
Nora Sovarel, Sean Talts, and Jinlin Yang for 
comments on the work and writing. This work was 
supported in part by grants from the DARPA Self-
Regenerative Systems Program (FA8750-04-2-0246) 
and the National Science Foundation through NSF 
Cybertrust (CNS-0524432). 

 
References 



  
 

   73 

[1]   Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and 
Jay Ligatti.  Control-Flow Integrity: Principles, 
Implementations, and Applications. CCS 2005. 

[2]  Starr Andersen. Changes to Functionality in 
Microsoft Windows XP Service Pack 2: Part 3: 
Memory Protection Technologies. Microsoft 
TechNet.  August 2004.  

[3]  Algirdas Avizienis and L. Chen. On the 
Implementation of N-version Programming for 
Software Fault-Tolerance During Program 
Execution.  International Computer Software and 
Applications Conference. 1977. 

[4]  Vasanth Bala, E. Duesterwald, S. Banerjia. 
Dynamo: A Transparent Dynamic Optimization 
System. ACM Programming Language Design 
and Implementation (PLDI). 2000. 

[5]  Arash Baratloo, N. Singh, T. Tsai. Transparent 
Run-Time Defense against Stack Smashing 
Attacks. USENIX Technical Conference. 2000.  

[6]  Elena Barrantes, D. Ackley, S. Forrest, T. Palmer, 
D. Stefanovic, D. Zovi. Intrusion Detection: 
Randomized Instruction Set Emulation to Disrupt 
Binary Code Injection Attacks. CCS 2003. 

[7] Emery Berger and Benjamin Zorn.  DieHard: 
Probabilistic Memory Safety for Unsafe 
Languages. ACM Programming Language Design 
and Implementation (PLDI), June 2006. 

[8]  Sandeep Bhatkar, Daniel DuVarney, and R. Sekar. 
Address Ofuscation: an Efficient Approach to 
Combat a Broad Range of Memory Error Exploits. 
USENIX Security 2003. 

[9]  Kenneth Birman. Replication and Fault Tolerance 
in the ISIS System. 10th ACM Symposium on 
Operating Systems Principles, 1985. 

[10] K. Birman, Building Secure and Reliable Network 
Applications, Manning Publications, 1996. 

[11] Derek Bruening, Timothy Garnett, Saman 
Amarasinghe. An Infrastructure for Adaptive 
Dynamic Optimization. International Symposium 
on Code Generation and Optimization. 2003. 

[12] Bulba and Kil3r. Bypassing StackGuard and 
StackShield. Phrack. Vol 0xa Issue 0x38. May 
2000. http://www.phrack.org/phrack/56/p56-0x05 

[13]  CERT. OpenSSL Servers Contain a Buffer 
Overflow During the SSL2 Handshake Process. 
CERT Advisory CA-2002-23. July 2002.  

[14] L. Chen and Algirdas Avizienis. N-Version 
Programming: A Fault Tolerance Approach to 
Reliability of Software Operation. 8th 
International Symposium on Fault-Tolerant 
Computing. 1978. 

[15] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi 
Gauriar, R. K. Iyer. Non-Control-Data Attacks 
Are Realistic Threats. USENIX Security 2005. 

[16] Marc Chérèque, David Powell, Philippe Reynier, 
Jean-Luc Richier, and Jacques Voiron. Active 
Replication in Delta-4. 22nd International 
Symposium on Fault-Tolerant Computing. July 
1992. 

[17] Monica Chew and Dawn Song. Mitigating Buffer 
Overflows by Operating System Randomization. 
Tech Report CMU-CS-02-197. December 2002. 

[18] George Coulouris, Jean Dollimore and Tim 
Kindberg. Distributed Systems: Concepts and 
Design (Third Edition). Addison-Wesley. 2001. 

[19] Crispin Cowan, C. Pu, D. Maier, H. Hinton, J. 
Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, 
and Q. Zhang. Stackguard: Automatic Adaptive 
Detection and Prevention of Buffer-Overflow 
Attacks. USENIX Security 1998.  

[20] C. Cowan, M. Barringer, S. Beattie, G. Kroah-
Hartman, M. Frantzen, and J. Lokier. 
FormatGuard: Automatic Protection From printf 
Format String Vulnerabilities. USENIX Security 
2001.  

[21] Scott Crosby and Dan Wallach. Denial of Service 
via Algorithmic Complexity Attacks. USENIX 
Security 2003. 

[22] Bruno De Bus, Bjorn De Sutter, Ludo Van Put, D.  
Chanet, K. De Bosschere. Link-time Optimization 
of ARM Binaries. Language. Compiler and Tool 
Support for Embedded Systems. 2004. 

[23] Nurit Dor, M. Rodeh, M. Sagiv. CSSV: Towards a 
Realistic Tool for Statically Detecting All Buffer 
Overflows in C. ACM Programming Language 
Design and Implementation. June 2003. 

[24]  Jon Erickson. Hacking: The Art of Exploitation. 
No Starch Press. November 2003, 

[25]  Hiroaki Etoh. GCC extension for protecting 
applications from stack-smashing attacks. IBM, 
2004. http://www.trl.ibm.com/projects/security/ssp 

[26]  Stephanie Forrest, Anil Somayaji, David Ackley. 
Building diverse computer systems. 6th Workshop 
on Hot Topics in Operating Systems. 1997. 

[27]  The FreeBSD Documentation Project. FreeBSD 
Handbook, Chapter 24. 2005.  

[28]  Debin Gao, Michael Reiter, Dawn Song. 
Behavioral Distance for Intrusion Detection. 8th 
International Symposium on Recent Advances in 
Intrusion Detection. September  2005. 

[29] Daniel Geer, C. Pfleeger, B. Schneier, J. 
Quarterman, P. Metzger, R. Bace, P. Gutmann. 
Cyberinsecurity: The Cost of Monopoly. CCIA 
Technical Report, 2003.  

[30]  Eric Haugh and Matt Bishop. Testing C programs 
for buffer overflow vulnerabilities. NDSS 2003.  

[31]  David Holland, Ada Lim, and Margo Seltzer. An 
Architecture A Day Keeps the Hacker Away. 



  
 

   74 

Workshop on Architectural Support for Security 
and Anti-Virus. April 2004. 

[32]  D. Jewett. Integrity S2: A Fault-Tolerant Unix 
Platform.  17th International Symposium on Fault-
Tolerant Computing Systems.  June 1991. 

[33]  Mark K. Joseph. Architectural Issues in Fault-
Tolerant, Secure Computing Systems. Ph.D. 
Dissertation. UCLA Department of Computer 
Science, 1988.  

[34]  James Just, J. Reynolds, L. Clough, M. Danforth, 
K. Levitt, R. Maglich, J. Rowe. Learning 
Unknown Attacks – A Start. Recent Advances in 
Intrusion Detection. Oct 2002. 

[35]  Gaurav Kc, A. Keromytis, V. Prevelakis. 
Countering Code-injection Attacks with 
Instruction Set Randomization. CCS 2003. 

[36]  John Knight and N. Leveson. An Experimental 
Evaluation of the Assumption of Independence in 
Multi-version Programming. IEEE Transactions 
on Software Engineering, Vol 12, No 1. Jan 1986. 

[37] Ken Knowlton. A Combination Hardware-
Software Debugging System. IEEE Transactions 
on Computers.  Vol 17, No 1. January 1968. 

[38]  Benjamin Kuperman, C. Brodley, H. 
Ozdoganoglu, T. Vijaykumar, A. Jalote. Detection 
and Prevention of Stack Buffer Overflow Attacks. 
Communications of the ACM, Nov 2005. 

[39]  David Larochelle and David Evans. Statically 
Detecting Likely Buffer Overflow Vulnerabilities.  
USENIX Security 2001. 

[40]  Ruby Lee, D. Karig, J. McGregor, and Z. Shi. 
Enlisting Hardware Architecture to Thwart 
Malicious Code Injection. International 
Conference on Security in Pervasive Computing. 
March 2003. 

[41] John McGregor, David Karig, Zhijie Shi, and 
Ruby Lee. A Processor Architecture Defense 
against Buffer Overflow Attacks. IEEE 
International Conference on Information 
Technology: Research and Education. August 
2003. 

[42]  Sjoerd Mullender and Robbert van Renesse. The 
International Obfuscated C Code Contest Entry. 
1984. http://www1.us.ioccc.org/1984/mullender.c 

[43]  James Newsome and Dawn Song. Dynamic Taint 
Analysis for Automatic Detection, Analysis, and 
Signature Generation of Exploits on Commodity 
Software. NDSS 2005. 

[44]  Adam J. O’Donnell and H. Sethu. On Achieving 
Software Diversity for Improved Network 
Security using Distributed Coloring Algorithms. 
CCS 2004. 

[45]  Manish Prasad and T. Chiueh. A Binary Rewriting 
Defense against Stack-Based Buffer Overflow 

Attacks. USENIX Technical Conference. June 
2003. 

[46]  James Reynolds, J. Just, E. Lawson, L. Clough, R. 
Maglich, K. Levitt. The Design and 
Implementation of an Intrusion Tolerant System. 
Foundations of Intrusion Tolerant Systems 
(OASIS). 2003. 

[47]  Michael Ringenburg and Dan Grossman.  
Preventing Format-String Attacks via Automatic 
and Efficient Dynamic Checking.  CCS 2005. 

[48]  Juan Rivas. Overwriting the .dtors Section. Dec 
2000. http://synnergy.net/downloads/papers/dtors.txt 

[49]  Olatunji Ruwase and Monica S. Lam. A Practical 
Dynamic Buffer Overflow Detector. NDSS 2004. 

[50]  Fred Schneider. Implementing Fault-Tolerant 
Services Using the State Machine Approach: A 
Tutorial. ACM Computing Surveys. Dec 1990. 

[51] Fred Schneider and L. Zhou. Distributed Trust: 
Supporting Fault-Tolerance and Attack-
Tolerance, Cornell TR 2004-1924, January 2004. 

[52] Kevin Scott and Jack W. Davidson. Safe Virtual 
Execution Using Software Dynamic Translation. 
ACSAC. December 2002. 

[53]  Kevin Scott, N. Kumar, S. Velusamy, B. Childers, 
J. Davidson, M. L. Soffa. Retargetable and 
Reconfigurable Software Dynamic Translation. 
International Symposium on Code Generation and 
Optimization. March 2003. 

[54]  Scut / team teso. Exploiting Format String 
Vulnerabilities. March 2001.  

[55]  Hovav Shacham, M. Page, B. Pfaff, Eu-Jin Goh, 
N. Modadugu, Dan Boneh. On the effectiveness of 
address-space randomization. CCS 2004. 

[56]  Umesh Shankar, K. Talwar, J. Foster, D. Wagner. 
Detecting Format String Vulnerabilities with Type 
Qualifiers. USENIX Security 2001. 

[57]  Stelios Sidiroglou, G. Giovanidis, A. Keromytis. 
A Dynamic Mechanism for Recovering from 
Buffer Overflow Attacks. 8th Information Security 
Conference. September 2005. 

[58]  Ana Nora Sovarel, David Evans, Nathanael Paul. 
Where’s the FEEB?: The Effectiveness of 
Instruction Set Randomization. USENIX Security 
2005. 

[59]  Mark Stamp. Risks of Monoculture. 
Communications of the ACM. Vol 47, Number 3. 
March 2004. 

[60]  Karthik Sundaramoorthy, Z. Purser, E. Rotenberg. 
Slipstream Processors: Improving both 
Performance and Fault Tolerance. Architectural 
Support for Programming Languages and 
Operating Systems (ASPLOS). Nov 2000. 

[61]  Bjorn De Sutter and Koen De Bosschere. 
Introduction: Software techniques for Program 



  
 

   75 

Compaction. Communications of the ACM. Vol 
46, No 8. Aug 2003. 

[62]  Eric Totel, Frédéric Majorczyk, Ludovic Mé. 
COTS Diversity Intrusion Detection and 
Application to Web Servers. Recent Advances in 
Intrusion Detection. September 2005. 

[63] Timothy Tsai and Navjot Singh. Libsafe 2.0: 
Detection of Format String Vulnerability Exploits. 
Avaya Labs White Paper. February 2001. 

[64] Nathan Tuck, B. Calder, and G. Varghese. 
Hardware and Binary Modification Support for 
Code Pointer Protection from Buffer Overflow. 
International Symposium on Microarchitecture. 
Dec 2004. 

[65] VeriTest Corporation. WebBench 5.0. 
http://www.veritest.com/benchmarks/webbench 

[66]  John Viega, J. Bloch, T. Kohno, Gary McGraw. 
ITS4 : A Static Vulnerability Scanner for C and 
C++ Code. ACSAC. Dec 2000. 

[67]  David Wagner, J. Foster, E. Brewer, A. Aiken. A 
First Step Towards Automated Detection of 
Buffer Overrun Vulnerabilities. NDSS 2000. 

[68]  D. Wilson. The STRATUS Computer System. 
Resilient Computer Systems: Volume 1. John 
Wiley and Sons, 1986. p. 208-231. 

[69]  Jun Xu, Z. Kalbarczyk, R. Iyer. Transparent 
Runtime Randomization for Security. Symposium 
on Reliable and Distributed Systems. October 
2003. 

[70]  Yongguang Zhang, H. Vin, L. Alvisi, W. Lee, S. 
Dao. Heterogeneous Networking: a New  
Survivability Paradigm. New Security Paradigms 
Workshop 2001. 



 
 

76 

 

 

 

 
 

Appendix F: PHPrevent – Web 
Application Security 

 
 

 
 



 
 

  77 

Automatically hardening web applications 
using precise tainting 

 

Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, David Evans 
Department of Computer Science, University of Virginia, 151 Engineer’s Way, Charlottesville, VA 22904-4740, USA ⊥ 

Abstract: Most web applications contain security vulnerabilities. The simple and natural 
ways of creating a web application are prone to SQL injection attacks and cross-site scripting 
attacks as well as other less common vulnerabilities. In response, many tools have been 
developed for detecting or mitigating common web application vulnerabilities. Existing 
techniques either require effort from the site developer or are prone to false positives. This 
paper presents a fully automated approach to securely hardening web applications. It is based 
on precisely tracking taintedness of data and checking specifically for dangerous content only 
in parts of commands and output that came from untrustworthy sources. Unlike previous work 
in which everything that is derived from tainted input is tainted, our approach precisely tracks 
taintedness within data values.  
Key words: web security; web vulnerabilities; SQL injection; PHP; cross-site scripting attacks; precise tainting; information 

flow 

1. Introduction 

Nearly all web applications are security critical, but only a small fraction of deployed web 
applications can afford a detailed security review. Even when such a review is possible, it is 
tedious and can overlook subtle security vulnerabilities. Serious security vulnerabilities are 
regularly found in the most prominent commercial web applications including Gmail1, eBay2, 
Yahoo3, Hotmail3 and Microsoft Passport4. Section 2 provides background on common web 
application vulnerabilities. 

Several tools have been developed to partially automate aspects of a security review, 
including static analysis tools that scan code for possible vulnerabilities5 and automated testing 
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tools that test web sites with inputs designed to expose vulnerabilities5-7. Taint analysis identifies 
inputs that come from untrustworthy sources (including user input) and tracks all data that is 
affected by those input values. An error is reported if tainted data is passed as a security-critical 
parameter, such as the command passed to an exec command. Taint analysis can be done 
statically or dynamically. Section 3 describes previous work on securing web applications, 
including taint analysis. 

For an approach to be effective for the vast majority of web applications, it needs to be fully 
automated. Many people build websites that accept user input without any understanding of 
security issues. For example, PHP & MySQL for Dummies8 provides inexperienced 
programmers with the knowledge they need to set up a database-backed web application. 
Although the book does include some warnings about security (for example, p. 213 warns 
readers about malicious input and advises them to check correct format, and p. 261 warns about 
<script> tags in user input), many of the examples in the book that accept user input contain 
security vulnerabilities (e.g., Listings 11-3 and 12-2 allow SQL injection, and Listing 12-4 
allows cross-site scripting). This is typical of most introductory books on web site development. 

In Section 4 we propose a completely automated mechanism for preventing two important 
classes of web application security vulnerabilities: command injection (including script and SQL 
injection) and cross-site scripting (XSS). Our solution involves replacing the standard PHP 
interpreter with a modified interpreter that precisely tracks taintedness and checks for dangerous 
content in uses of tainted data. All that is required to benefit from our approach is that the 
hosting server uses our modified version of PHP. 

The main contribution of our work is the development of precise tainting in which taint 
information is maintained at a fine level of granularity and checked in a context-sensitive way. 
This enables us to design and implement fully-automated defense mechanisms against both 
command injection attacks, including SQL injection, and cross-site scripting attacks.  Next, we 
describe common web application vulnerabilities.  Section 3 reviews prior work on securing 
web applications.  Section 4 describes our design and implementation, and explains how we 
prevent exploits of web application vulnerabilities.  

2. Web Application Vulnerabilities 

Figure 1 depicts a typical web application. For clarity, we focus on web applications 
implemented using PHP, which is currently one of the most popular language for implementing 
web applications (PHP is used at approximately 1.3M IP addresses, 18M domains, and is 
installed on 50% of Apache servers9). Most issues and architectural properties are similar for 
other web application languages.  

A client sends input to the web server in the form of an HTTP request (step 1 in Figure 1). 
GET and POST are the most common requests. The request encodes data created by the user in 
HTTP header fields including file names and parameters included in the requested URI. If the 
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URI is a PHP file, the HTTP server will load the requested file from the file system (step 2) and 
execute the requested file in the PHP interpreter (step 3). The parameters are visible to the PHP 
code through predefined global variable arrays (including $_GET and $_POST).  

The PHP code may use these values to construct commands that are sent to PHP functions 
such as a SQL query that is sent to the database (steps 4 and 5), or to make calls to PHP API 
functions that call system APIs to manipulate system state (steps 6 and 7). The PHP code 
produces an output web page based on the returned results and returns it to the client (step 8).  

We assume a client can interact with the web server only by sending HTTP requests to the 
HTTP server. In particular, the only way an attacker can interact with system resources, 
including the database and file system, is by constructing appropriate web requests. We divide 
attacks into two general classes of attacks: injection attacks attempt to construct requests to the 
web server that corrupt its state or reveal confidential information; output attacks (e.g., cross-site 
scripting) attempt to send requests to the web server that cause it to generate responses that 
produce malicious behavior on clients. 

a. Command injection attacks 

In a command injection attack an attacker attempts to access confidential information or 
corrupt the application state by constructing an input that allows the attacker to inject malicious 
control logic into the web application. With the system architecture shown in Figure 1, an attack 
could attempt to inject PHP code that will be executed by the PHP interpreter, SQL commands 
that will be executed by the database, or native machine code that will be executed by the web 
server host directly. We consider only the first two cases. Web application vulnerabilities are far 
more common than vulnerabilities in the underlying server or operating system since there are 
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Figure 1. Typical web application architecture 
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far more different web applications than there are servers and operating systems, and developers 
of web applications tend to be far less sophisticated from a security perspective than developers 
of operating systems and web servers.  

PHP injection. In a PHP injection attack, the attacker attempts to inject PHP code that will 
be interpreter by the server. If an attacker can inject arbitrary code, the attacker can do 
everything PHP can and has effectively complete control over the server. Here is a simple 
example of a PHP injection in phpGedView, an online viewing system for genealogy 
information10. The attack URL is of the form: 
 http://[target]/[...]/editconfig_gedcom.php?gedcom_config=../../../../../../etc/passwd 

The vulnerable PHP code uses the gedcom_config value as a filename: require($gedcom_config);. 
The semantics of require is to load the file and either interpret it as PHP code (if the PHP tags are 
found) or display the content. Thus this code leaks the content of the password file. Abuse of 
require and its related functions is a commonly reported occurrence11,12, despite the fact that, 
properly configured, PHP is impervious to this basic attack. However, additional defenses are 
needed for more sophisticated injection attacks such as the recently released Santy Worm13 and 
the phpMyAdmin attack14. 

SQL injection. Attacking web applications by injecting SQL commands is a common 
method of attacking web applications15,16. We illustrate a simple SQL injection that is 
representative of actual vulnerabilities. Suppose the following is used to construct an SQL query 
to authenticate users against a database:  

$cmd="SELECT user FROM users WHERE user = ' " . $user  
          . "' AND password = ' " . $pwd . " ' "; 
The value of $user comes from $_POST['user'], a value provided by the client using the login 

form. A malicious client can enter the value: ' OR 1 = 1 ; --' (-- begins a comment in SQL which 
continues to the end of the line). The resulting SQL query will be: SELECT user FROM users WHERE 
user = ' ' OR 1 = 1 ; -- ' AND password = 'x'. The injected command closes the quote and comments out 
the AND part of the query. Hence, it will always succeed regardless of the entered password. 

The main problem here is that the single quote provided by the attacker closes the open 
quote, and the remainder of the user-provided string is passed to the database as part of the SQL 
command. This attack would be thwarted by PHP installations that use the default magic quotes 
option. When enabled, magic quotes automatically sanitize input data by adding a backslash to 
all strings submitted via web forms or cookies. However, magic quotes do not suffice for attacks 
that do not use quotes17.  

One solution to prevent SQL injections is to use prepared statements18. A prepared statement 
is a query string with placeholders for variables that are subsequently bound to the statement and 
type-checked. However, this depends on programmers changing development practices and 
replacing legacy code. Dynamic generation of queries using regular queries will continue to be 
prevalent for the foreseeable future.  
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b. Output attacks 

Output attacks send a request to a web application that causes it to produce an output page 
designed by the attacker to achieve some malicious goal. The most dangerous kind of output 
attack is a cross-site scripting attack, in which the web server produces an output page 
containing script code generated by the attacker. The script code can steal the victim’s cookies 
or capture data the victim unsuspectingly enters into the web site. This is especially effective in 
phishing attacks in which the attacker sends potential victims emails convincing them victim to 
visit a URL. The URL may be a trusted domain, but because of a cross-site scripting 
vulnerability the attacker can construct parameters to the URL that cause the trusted site to 
create a page containing a form that sends data back to the attacker. For example, the attacker 
constructs a link like this: 
<a href='http://bad.com/go.php?val=<script src="http://bad.com/attack.js"></script>'> 

If the implementation of go.php uses the val parameter in the generated web page output (for 
example, by doing print "Results for: " . $_GET['val'];), the malicious script will appear on the resulting 
page. A clever attacker can use character encodings to make the malicious script appear 
nonsensical to a victim who inspects the URL before opening it. 

Five years ago, CERT Advisory 2000-02 described the problem of cross-site scripting and 
advised users to disable scripting languages and web site developers to validate web page 
output19. Nevertheless, cross-site scripting problems remain a serious problem today. Far too 
much functionality of the web depends on scripting languages, so most users are unwilling to 
disable them. Even security-conscious web developers frequently produce websites that are 
vulnerable to cross-site scripting attacks1,4,20-22. As with SQL injection, ad hoc fixes often fail to 
solve discovered problems correctly—the initial filters develop to fix the Hotmail vulnerability 
could be circumvented by using alternate character encodings4. Hence, we focus on fully 
automated solutions. 

3. Related work 

Several approaches have been developed for securing web applications including filtering 
input and output that appears dangerous, automated testing and diversity defenses. The 
approaches most similar to our proposed approach involve analyzing information flow.  

Input and Output Filtering. Scott and Sharp developed a system for providing an 
application-level firewall to prevent malicious input from reaching vulnerable web servers23. 
Their approach required a specification of constraints on different inputs, and compiled those 
constraints into a checking program. This requires a programmer to provide a correct security 
policy specific to their application, so is ill-suited to protecting typical web developers. Several 
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commercial web application firewalls provide input and output filtering to detect possible 
attacks24,25. However, these tools are prone to both false positives and negatives26. 

Automated Testing. There are several web application security testing tools designed 
specifically to find vulnerabilities5,27,28. The problem with these tools is that they have to guess 
the exploit data in order to expose the vulnerability. For well-known generic classes of 
vulnerabilities, such as SQL injection, this may be possible. But for novel or complex 
vulnerabilities, it is unlikely the scanner will guess the right inputs to expose the vulnerability.  

Diversity Defenses. Instruction-Set Randomization is a form of diversity in which defenders 
modify the instruction set used to run applications29. Thus, code-injection attacks that rely on 
knowledge of the original language are detected and thwarted easily. This approach has been 
advocated for general scripting languages29 and for protection against SQL injections30. There 
are two main problems with ISR: (1) it is effective only against code injection attacks and 
incomplete by itself (it does not handle cross-site scripting attacks), and (2), the deployment of 
ISR is not transparent to developers and requires the transformation of application code. 

Information Flow. All of the web vulnerabilities described in Section 0 stem from insecure 
information flow: data from untrusted sources is used in a trusted way. The security community 
has studied information flow extensively31. The earliest work focused on confidentiality, in 
particular in preventing flows from trusted to untrusted sources32. In our case, we are primarily 
concerned with integrity. Biba showed that information flow can also be used to provide 
integrity by considering flows from untrusted to trusted sources33.  

Information flow policies can be enforced statically, dynamically or by a combination of 
static and dynamic techniques. Static taint analysis has been used to detect security 
vulnerabilities in C programs34,35. Static approaches have the advantage of increased precision, 
no run-time overhead and the ability to detect and correct errors before deployment. However, 
they require substantial effort from the programmer. Since we are focused on solutions that will 
be practically deployed in typical web development scenarios, we focus on dynamic techniques.  

Huang et. al developed WebSSARI, a hybrid approach to securing web applications36. The 
WebSSARI tool uses a static analysis based on type-based information flow to identify possible 
vulnerabilities in PHP web applications. Their type-based approach operates at a coarse-grain: 
any data derived from tainted input is considered fully tainted. WebSSARI can insert calls to 
sanitization routines that filter potentially dangerous content from tainted values before they are 
passed to security-critical functions. Because we propose techniques for tracking taintedness at a 
much finer granularity, our system can be more automated than WebSSARI: all we require is 
that the server uses our modified interpreter PHP to protect all web applications running on the 
server. 
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4. Automatic Web Hardening 

Our design is based on maintaining precise information about what data is tainted through 
the processing of a request, and checking that user input sent to an external command or output 
to a web page contains only safe content. Our automated solution prevents a large class of 
common security vulnerabilities without any direct effort required from web developers.  

The only change from the standard web architecture in Figure 1 is that we replace the 
standard PHP interpreter with a modified interpreter that identifies which data comes from 
untrusted sources and precisely tracks how that data propagates through PHP code interpretation 
(Section a), checks that parameters to commands do not contain dangerous content derived from 
user input (Section b), and ensures that generated web pages do not contain scripting code 
created from untrusted input (Section 0).  

a. Keeping track of precise taint information 

We mark an input from untrusted sources including data provided by client requests as 
tainted. We modified the PHP interpreter’s implementation of the string datatype to include 
tainting information for string values at the granularity of individual characters. We then 
propagate taint information across function calls, assignments and composition at the granularity 
of a single character, hence precise tainting. The application of precise tainting enables the 
prevention of injection attacks and the ability to easily filter output for XSS attacks. If a function 
uses a tainted variable in a dangerous way, we can reject the call to the function (as is done with 
SQL queries or PHP system functions) or sanitize the variable values (as is done for preventing 
cross-site scripting attacks).  

Web application developers often remember to sanitize inputs from GET and POSTs, but will 
omit to check other variables that can be manipulated by clients. Our approach ensures that all 
such external variables, e.g. hidden form variables, cookies and HTTP header information, are 
marked as tainted. We also keep track of taint information for session variables and database 
results.  

i. Taint strings 

For each PHP string, we track tainting information for individual characters. Consider the 
following code fragment where part of the string $x comes from a web form and the other from a 
cookie:  
   $x = "Hello " . $_GET['name1'] . ". I am " . $_COOKIE['name2']; 

The values of $_GET['name1'] and $_COOKIE['name2'] are fully tainted (we assume they are Alice 
and Bob). After the concatenation, the values of $x and its taint markings (underlined) are: 
Hello Alice. I am Bob. 
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ii. Functions 

We keep track of taint information across function calls, in particular functions that 
manipulate and return strings. The general algorithm is to mark strings returned from function as 
tainted if any of the input arguments are tainted. Whenever feasible, we exploit the semantics of 
functions and keep track of taintedness precisely. For example, consider the substring function 
in which taint markings for the result of the substr call depend on the part of the string they 
select: substr(“precise taint me”, 2, 10); // ecise tai 

iii. Database values and session variables 

Databases provide another potential venue for attackers to insert malicious values. We treat 
strings that are returned from database queries as untrusted and mark them as tainted. While this 
approach may appear overly restrictive, in the sense that legitimate uses may be prevented, we 
show in Section 4.3 how precise tainting and our approach to checking for cross-site scripting 
mitigates this potential problem. Further, if the database is compromised by some other means, 
the attacker is still unable to use the compromised database to construct a cross-site scripting 
attack. 

The stateless nature of HTTP requires developers to keep track of application state across 
client requests. However, exposing session variables to clients would allow attackers to 
manipulate applications. Well-designed web applications keep session variables on the server 
only and use a session id to communicate with clients. We modified PHP to store taint 
information with session variables. 

b. Preventing command injection 

The tainting information is used to determine whether or not calls to security-critical 
functions are safe. To prevent command injection attacks, we check that the tainted information 
passed to a command is safe. The actual checking depends on the command, and is designed to 
be precise enough to prevent all command injection attacks from succeeding while allowing 
typical web applications to function normally when they are not under attack. 

i. PHP injection 

To prevent PHP injection attacks we disallow calls to potentially dangerous functions if any 
one of their arguments is tainted. The list of functions checked is similar to those disallowed by 
Perl and Ruby’s taint mode37,38 and consists of functions that treat input strings as PHP code or 
manipulate the system state such as system calls, I/O functions, and calls that are directly 
evaluated.  
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ii. SQL injection 

Preventing SQL injections requires taking advantage of precise taint information. Before 
sending commands to the database, e.g. mysql_query, we run the following algorithm to check for 
injections: 

1. Tokenize the query string; preserve taint markings with tokens. 
2. Scan each token for identifiers and operator symbols (ignore literals, i.e., strings, 

numbers, boolean values). 
3. Detect an injection if an operator symbol is marked as tainted. Operator symbols are 

,()[].;:+-*/\%^<>=~!?@#&|` 
4. Detect an injection if an identifier is tainted and a keyword. Example keywords 

include UNION, DROP, WHERE, OR, AND. 
Using the example from Section 2.a: 

$cmd="SELECT user FROM users WHERE user = ' " . $user  
 . "' AND password = ' " . $password . " ' "; 

The resulting query string (with $user set to ' OR 1 = 1 ; -- ') is tainted as follows: SELECT user 
FROM users WHERE user = ' ' OR 1 = 1 ; -- ' AND password = 'x'. We detect an injection since OR is both 
tainted and a keyword.  

iii. Preventing cross-site scripting 

Our approach to preventing cross-site scripting relies on checking generated output. Any 
potentially dangerous content in generated HTML pages must contain only untainted data. We 
modify the PHP output functions (print, echo, printf and other printing functions) with functions 
that check for tainted output containing dangerous content. The replacement functions output 
untainted text normally, but keep track of the state of the output stream as necessary for 
checking. For a contrived example, consider an application that opens a script and then prints 
tainted output: print "<script>document.write ($user)</script>"; 

An attacker can inject JavaScript code by setting the value of $user to a value that closes the 
parenthesis and executes arbitrary code: " me");alert("yo". Note that the opening script tag could be 
divided across multiple print commands. Hence, our modified output functions need to keep 
track of open and partially open tags in the output. We do not need to parse the output HTML 
completely (and it would be unadvisable to do so, since many web applications generate 
ungrammatical HTML). 

Checking output instead of input avoids many of the common problems with ad hoc filtering 
approaches. Since we are looking at the generated output any tricks involving separating attacks 
into multiple input variables or using character encodings can be handled systematically. Our 
checking involves whitelisting safe content whereas blacklisting attempts to prevent cross-site 
scripting attacks by identifying known dangerous tags, such as <script> and <object>. The latter 
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fails to prevent script injection involving other tags. For example, a script can be injected into 
the apparently harmless <b> (bold) tag using parameters such as onmouseover.   

Our defense takes advantage of precise tainting information to identify web page output 
generated from untrusted sources. Any tainted text that could be dangerous is either removed 
from the output or altered to prevent it being interpreted (for example, replacing < in unknown 
tags with &lt;). Our conservative assumptions mean that some safe content may be inadvertently 
suppressed; however, because of the precise tainting information, this is limited to content that is 
generated from untrusted sources. 

5. Conclusion 

We have described a fully automated, end-to-end approach for hardening web applications. 
By exploiting precise tainting in a way that takes advantage of program language semantics and 
performing context-dependent checking, we are able to prevent a large class of web application 
exploits without requiring any effort from the web developer. Initial measurements indicate that 
the performance overhead incurred by using our modified intepreter is less than 10%. 

Effective solutions for protecting web applications need to balance the need for precision 
with the limited time and effort most web developers will spend on security. Fully automated 
solutions, such as the one described in this paper, provide an important point in this design 
space.  
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Abstract 

Instruction Set Randomization (ISR) has been proposed as a promising defense against code injection attacks. It 
defuses all standard code injection attacks since the attacker does not know the instruction set of the target machine. 
A motivated attacker, however, may be able to circumvent ISR by determining the randomization key. In this paper, 
we investigate the possibility of a remote attacker successfully ascertaining an ISR key using an incremental attack. 
We introduce a strategy for attacking ISR-protected servers, develop and analyze two attack variations, and present 
a technique for packaging a worm with a miniature virtual machine that reduces the number of key bytes an attacker 
must acquire to 100. Our attacks can break enough key bytes to infect an ISR-protected server in about six minutes. 
Our results provide insights into properties necessary for ISR implementations to be secure. 

 

1. Introduction 

In a code injection attack, an attacker exploits a software vulnerability (often a buffer overflow vulnerability) to 
inject malicious code into a running program. Since the attacker is able to run arbitrary code on the victim's 
machine, this is a serious attack which grants the attacker all the privileges of the compromised process.  

In order for the injected code to have the intended effect, the attacker must know the instruction set of the target. 
Hence, a general technique for defusing code injection attacks is to obscure the instruction set from the attacker. 
Instruction Set Randomization (ISR) is a technique for accomplishing this by randomly altering the instructions 
used by a host machine, application, or execution. By changing the instruction set, ISR defuses all code injection 
attacks. ISR does not prevent all control flow hijacking attacks, though; for example, the return-to-libc attack [18] 
does not depend on knowing the instruction set. Much work has been done on the general problem of mitigating 
code injection attacks, and ISR is one of many proposed approaches. Previous papers have discussed the advantages 
and disadvantages of ISR relative to other defense strategies [3, 12, 4]. In this paper, we focus on evaluating ISR’s 
effectiveness in protecting a network of vulnerable servers from a motivated attacker and consider properties 
necessary for an ISR implementation to be secure. 

Several implementations of ISR have been proposed. Kc et al.’s design emphasized the possibility of an efficient 
hardware implementation [12]. They considered a processor in which a special register stores the encryption key. 
When an instruction is loaded into the processor, it is decrypted by XORing it with the value in the key register. 
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The processor provides a special privileged instruction for writing into the key register and a different encryption 
key is associated with each process. The code section of target executable is encrypted with a random key, which is 
stored in the executable header information so it can be loaded into the key register before executing the program. 
Kc et al. evaluated their design using the Bochs emulator simulating an x86 processor with a 32-bit key register.  

Barrantes et al.’s design, RISE, is not constrained by the need for an efficient hardware implementation [3]. Instead 
of using an encryption key register, they use a key that can be as long as the program text and encrypt each byte in 
the code text by XORing it with the corresponding key byte. Encryption is done at load time with a generated 
pseudo-random key, so each process will have its own, arbitrarily long key. Their implementation used an emulator 
built on Valgrind [16] to decrypt instruction bytes with the corresponding key bytes when they are executed. 

Existing code injection attacks assume the standard instruction set so they will fail against an ISR-protected server. 
This paper presents a strategy a motivated attacker who is aware of the defense may be able to use to circumvent 
ISR by determining the key. Our attack is inspired by Shacham et al.’s attack on memory address space 
randomization [17]. Like ISR, memory address space randomization attempts to defuse a class of attacks by 
breaking properties of the target program on which the attacker relies (in this case, the location of data structures 
and code fragments in memory). Shacham et al. demonstrated that the 16-bit key space used by PaX Address Space 
Layout Randomization [15] could be  quickly compromised by a guessing attack. 

Many of the necessary conditions for our attack are similar to the conditions needed for Shacham et al.s memory 
randomization attack. However, since the key space used in ISR defenses is too large for a brute force search, we 
need an attack that can break the key incrementally. Kc et al. mention the possibility that an attacker might be able 
to guess parts of the key independently based on the fact that some useful instructions in x86 architecture have only 
one or two bytes . Our attacks exploit this opportunity. 

The key contributions of this paper are: 

1. The first quantitative evaluation of the effective security provided by ISR defenses against a motivated 
adversary. 

2. An identification of an avenue of attack available to a remote attacker attempting to determine the encryp-
tion key used on an ISR-protected server. 

3. Design and implementation of a micro-virtual machine that can be used to infect an ISR-protected server 
using a small number of acquired key bytes. 

4. An evaluation of the effectiveness of two types of attack on a prototype ISR implementation. 
5. Insights into the properties necessary for an ISR implementation to be secure against remote attacks. 

Next, we describe our incremental key guessing approach. Section 3 provides details on our attack and analyzes its 
efficiency. Section 4 describes how an attacker could use our attack to deploy a worm on a network of ISR-
protected servers. Section 5 discusses the impact of our results for ISR system designers. 

2. Approach 

The most difficult task in guessing a key incrementally is to be able to notice a good partial guess. Suppose we 
correctly guess the first two bytes of a four byte key. We would not be able to determine whether or not the guess is 
correct if the random instruction in the next two bytes executes and causes the program to crash. The result would 
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be indistinguishable from an incorrect guess of the first two bytes. Even if the next random instruction is harmless, 
there is a high probability that a subsequently executed instruction will cause the program to crash in a way that is 
indistinguishable from an incorrect guess. 

Our approach to distinguish correct and incorrect partial guesses is to use control instructions. We attempt to inject 
a particular control instruction with all possible randomization keys. When the guess is correct the execution flow 
changes in a way that is remotely observable. For an incremental attack to work, the attacker must be able to 
reliably determine if a partial guess is correct.  

For each attempt, there are four possible outcomes:  

 Apparently Correct Behavior Apparently Incorrect Behavior
Correct Guess Success False Negative 
Incorrect Guess False Positive Progress 

 
Ideally, a correct guess would always lead to distinguishably “correct” behavior, and an incorrect guess would 
always lead to distinguishably “incorrect” behavior. Given sufficient knowledge of the target system, we should be 
able to construct attacks where a correct guess never produces an apparently incorrect execution (barring exogenous 
events that would also make normal requests fail). However, it is not possible to design an attack with perfect 
recognition: some incorrect guesses will produce behavior that is remotely indistinguishable from that produced by 
a correct guess. For example, an incorrect guess may decrypt to a harmless instruction, and some subsequently 
executed instruction may produce the apparently correct execution behavior. 

We present attacks based on two different control instructions: return, a one-byte instruction, and jump, a two-byte 
instruction. For both attacks, if the guess is incorrect, there is a high probability that executing random instructions 
will cause the process to crash. If the guess is correct, the attacker will observe different server behavior: 
recognizable output for the return attack and an infinite loop for the jump attack.  

Next we describe conditions necessary for the attacks to succeed, explain how each attack is done, and how an 
incremental attack can be carried out on a large key. For both attacks, there are situations where an incorrect guess 
produces the same behavior as a correct guess and complications that arise in guessing larger keys. In Section 3, we 
discuss those issues in more detail and analyze the expected number of attempts required for each attack. 

2.1 Requirements 

In order for the attack to be possible, the attacker must have some way of injecting code into the target system. We 
assume the application is vulnerable to a simple stack-smashing buffer overflow attack, although our attack does 
not depend on how code is injected into the randomized program. It depends only on a vulnerability that can be 
exploited to inject and execute code in the running process. 

Our attack is only feasible for vulnerabilities where the attacker can inject code to a fixed memory location. In a 
normal stack-smashing attack, the attacker sometimes cannot determine the exact location where code will be 
inserted because of variations in system libraries, operating system patches and configurations [13]. A common 
solution is to pad the injected code with nop instructions, often referred to as a nop sled [2]. The attack will succeed 
as long as the return address is overwritten with an address that is in the range of injected nop instructions. When 
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building an attack against an application protected by ISR, the attacker cannot use this approach because the 
encryption masks for the positions where nop instructions should be placed are unknown. Another technique, called 
a register spring [7], overwrites the return address with the address of an instruction found in the application or a 
library that will indirectly transfer control to the buffer, such as jmp esp or call eax. These instructions are not likely 
to appear normally in the code, but it is sufficient for an attacker to locate one of the instructions as operand bytes 
or overlapping bytes in the code segment. Sapphire used a register spring technique by jumping to a jmp esp found 
in sqlsort.dll [10].  

The 32-bit or longer key typically used for ISR is too large for a practical brute force attack, so we must determine 
the key incrementally. The attacker must be able to acquire enough key bytes to inject the malicious code before the 
target program is re-randomized with a different key. Since our attack will necessarily crash processes on the target 
system, it requires either that application executions use the same randomization key each time the target 
application is restarted, or that the target application uses the same key for many processes it forks. A typical 
application that exhibits this property is a server that forks a process to serve each client’s request. Since failed 
guess attempts will usually cause the executing process to crash, the attacker must have an opportunity to send 
many requests to a server encrypted with the same key. Many servers create separate processes to handle 
simultaneous requests. For example, Apache (since version 2.0), provides configuration options to allow both 
multiple processes and multiple threads within each process to handle simultaneous requests [1].  

Since our attack depends on being able to determine the correct key mask from observing correct guesses, the 
method used to encrypt instructions must have the property that once a ciphertext-plaintext pair is learned it is 
possible to determine the key. The XOR encryption technique used by RISE [3] trivially satisfies this property. Kc 
et al. suggest two possible randomization techniques: one uses XOR encryption and the other uses a secret 32-bit 
transposition [12]. The XOR cipher, which is what their prototype implements, is vulnerable to our attack. Our 
attack would not work without significant modification on the 32-bit transposition cipher. Learning one ciphertext-
plaintext pair would reduce the keyspace considerably, but is not enough to determine the transposition. Thus, 
several known plaintext-ciphertext pairs would be needed to learn the transposition key.  

The final requirement stems from the remote attacker’s need to observe enough server behavior to distinguish 
between correct and incorrect guesses. If the attack program communicates with the server using a TCP connection 
it can learn when the process handling the request crashes because the TCP socket is closed. If the key guess is 
incorrect, the server process will (usually) crash and the operating system will close the socket. Hence, the server 
must have a vulnerability along an execution path where normal execution keeps a socket open so the remote 
attacker can distinguish between the two behaviors. If the normal execution flow would close the connection with 
the client before returning from the vulnerable procedure, the attacker is not able to easily observe the effects of the 
injected code. The return attack has additional requirements, described in the next section. In cases where those 
requirements are not satisfied, the (slower) jump attack can be used. 

2.2 Return Attack 

The return attack uses the near return (0xc3) control instruction [11]. This is a one byte instruction, so it can be 
found with at most 256 guesses.  

Figure 1 shows the stack layout before and after the attack. The attack string preserves the base pointer, replaces the 
original return address with the target address where the injected code is located, and places the original return 
address just below the overwritten address. When the routine returns it restores the base pointer register from the 
stack and jumps to the overwritten return address, which is now the injected instruction. If the guess is correct, the 
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derandomized injected code is the return instruction. When it executes, the saved return address is popped from the 
stack and the execution continues as if the called routine returned normally. 

There is one important problem, however. When the guess is correct, the return statement that is executed pops an 
extra element from the stack. In Figure 1, the star marks the position of the top of the stack in normal case (left) and 
after the injected code is executed successfully (right). After returning from the vulnerable routine, the stack is 
compromised because the top of the stack is now one element below where it should be. This means the server is 
likely to crash soon even after a correct guess since all the values restored from the stack will be read from the 
wrong location. 

Thus, the return attack can only be used to exploit a vulnerability at a location where code that sends a response to 
the client will execute before the compromised stack causes the program to crash. Otherwise, the attacker will not 
be able to distinguish between correct and incorrect guesses since both result in server crashes. An obvious problem 
is caused by a subsequent return. At the next return instruction, corresponding to the return from the method that 
called the vulnerable method, the actual return address is one element up the stack from the location that will be 
used. It is very likely that the element on the stack interpreted as the return address will be an illegal memory 
reference. Even when the memory reference is legal, it is unlikely to jump to a location that corresponds to the 
beginning of a valid instruction. 

So, the return attack can only be used effectively for vulnerabilities in which observable server activity (such as a 
message back to the attack client) occurs between the guessed return and the first instruction that would cause the 
server to crash (which at the latest, occurs at the end of the called vulnerable routine, but often occurs earlier). We 

Figure 1. Return attack. 
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suspect situations where the return attack can be used are rare, but an attacker who is fortunate enough to find such 
a vulnerability can use it to break an ISR key very quickly. 

2.3 Jump Attack 

For vulnerabilities where the return attack cannot succeed, we can use the jump attack instead. The advantage of the 
jump attack is it can be used on any vulnerability where normal behavior keeps a socket open to the client. 
However, it requires guessing a two-byte instruction, instead of the one-byte return instruction. Another 
disadvantage of the jump attack is that it produces infinite loops on the server. This slows down server processing 
for further attack attempts (and may also be noticed by a system administrator). We will present techniques for 
substantially reducing both the number of guess attempts required and the number of infinite loops created in 
Section 3.2. 

The jump attack is depicted in Figure 2. As with the return attack, the jump attack overwrites the return address 
with an address on the stack where a jump instruction encrypted with the current guess is placed. The injected 
instruction is a near jump (0xeb) instruction with an offset -2 (0xfe). If the guess is correct it will jump back to 
itself, creating an infinite loop. The attacker will see the socket open but receive no response. After a timeout has 
expired, the attacker assumes the server is in an infinite loop. Usually, an incorrect guess will cause the process 
handling the request to crash. This is detected by the attacker because the socket is closed before the timeout 
expires.  

Figure 2. Jump attack. 
 

2.4 Incremental Key Breaking 

After the first successful guess, the attacker has obtained the encryption key for one (return attack) or two (jump 
attack) memory locations. Since other locations are encrypted with different key bits, however, finding one or two 
key bytes is not enough to inject effective malicious code. 
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The next step is to change the position of the guessed key byte. For the return attack, we just advance to the next 
position and repeat the attack using the next position as the return address. With the jump attack, the attacker needs 
up to obtain the first two key bytes at once, but can proceed in one byte at a time thereafter. On the first attack, 
shown in the left side of Figure 3, the positions base and base+1 of the attack string are occupied by the jump 
instruction. On the second attack, we attempt to guess the key at location base–1. Since we already know the key 
for location base, we can encode the offset value -2 at that location, and can guess the key for the jump opcode with 
at most 28 attempts. 

During the incremental phase of the attack, we decrement the return address placed on the stack for each memory 
location we guess. At some point the last byte of the address will be zero. This address cannot be injected using a 
buffer overflow exploit, because it will terminate the attack string before the other bytes can be injected. To deal 
with this case we introduce an extra jump placed in a position where we already know the encryption key and 
whose address does not contain a null byte. The return address will point to this jump, which will then jump to the 
position for which we are trying to guess the key.  

When a repeated 32-bit randomization key is used (as in [12]), the number of attempts required to acquire the key 
using the straightforward attacks would be at most 1024 (4×28) for the return attack and 66,048 (216+2×28) for the 
jump attack (extra attempts may be needed to distinguish between correct guesses and false positives, as explained 
in the next section). For ISR implementations, such as RISE [3], that do not use short repeated keys the attacker 
may need to obtain many key bytes before the malicious code can be injected. This cannot be done realistically with 
the approach described here. Section 3 describes techniques that can be used to make incremental key breaking 
more efficient. Section 4 explains how many key bytes an attacker will need to compromise to inject and propagate 
an effective worm. 

Figure 3. Incremental jump attack. 
 

3. Attack Details and Analysis 

The main difficulty in getting the attack to work in practice is that an incorrect guess may have the same behavior 
as the correct guess. In order to determine the key correctly, the attacker needs to be able to identify the correct key 
byte from multiple guesses with the same apparently correct server behavior. The next two subsections explain how 
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false positives can be eliminated with the return and jump attacks respectively. Section 3.3 describes an extended 
attack that can be used to break large keys. 

3.1 Return Attack 

There are three possible reasons a return attack guess could produce the apparently correct behavior: 

1. The correct key was guessed and the injected instruction decrypted to 0xc3.  
2. An incorrect key was guessed, but the injected instruction decrypted to some other instruction that 

produced the same observable behavior as a near return. 
3. The injected instruction decrypted to an instruction that did not cause the process to crash, and some 

subsequently executed instruction behaved like a near return. 

The first case will happen once in 256 guess attempts. 

There are several guesses that could produce the second outcome. The most likely is when the injected instruction 
decrypts to the 3-byte near return and pop instruction, 0xc2 imm16. The near return and pop has the same behavior 
as the near return instruction, except it will also pop the value of its operand bytes off the stack. Hence, if the 
current stack height is less than the decrypted value of the the next two bytes on the stack, the observed behavior 
after a 0xc2 instruction may be indistinguishable from the intended 0xc3 instruction. In the worst case, the stack is 
high enough for all values to be valid and we will have a false positive corresponding to 0xc2 once every 256 guess 
attempts.  

There are two other types of instructions that can also produce the apparently correct behavior: calls and jumps. In 
order to produce the near return behavior, the 4-byte offset of the call or jump instruction must jump to the return 
address. The probability of encountering such a false positive is extremely remote (approximately 2-36). Thus, we 
ignore this case in our analysis and implementation; this has not caused problems in our experiments. 

Given that we observe the return behavior, we can estimate the probability that the correct mask was guessed. We 
use ph to represent the probability an arbitrarily long random sequence of bits will start with a harmless instruction. 
We consider any instruction that does not cause the execution to crash immediately after executing it to be harmless 
(even though it may alter the machine state in ways that cause subsequent instruction to produce a crash). 
Instruction lengths vary, so determining whether a given injected byte is harmless may depend on the subsequent 
bytes on the stack. The value of ph depends on the current state of the execution. Whether or not a given instruction 
produces a crash depends on the execution’s address space, as well as the current values in registers and memory. 

We use pr to represent the probability a random sequence of bits on the stack exhibits the same behavior as the near 
return instruction, thus capturing cases 1 and 2 above. As we have defined it, the harmless instructions include 
instructions that behave like the near return. We use phnr = ph – pr to denote the probability random bits correspond 
to a harmless instruction that does not behave like a near return. Then, we can estimate the probability that a guess 
produces the apparently correct behavior as:  
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Given that we observe the correct behavior for some guess, the conditional probability that the guess was actually 
correct is: 

 

 
 

The actual values of ph and pr depend on the execution state. For our test server application (described in Section 
5.1), we compute pr as 1/256 (probability of guessing 0xc3) + 1/256 (probability of guessing 0xc2) × 10588/216 
(fraction of immediate values that do not cause a crash) = 0.00454. In our experiments (described in Section 5.3), 
we observed the apparently correct behavior with probability 0.0073. The false positive probability is 0.0034. From 
this, we estimate ph = 0.43. Thus, 57% of the time an execution will crash on the first random instruction inserted.  

Eliminating False Positives 

For each memory location for which we want to learn the randomization key, a straightforward implementation 
guesses all 255 possibilities. We cannot guess the mask 0xc3 using a string buffer overflow attack, since this would 
require inserting a null byte. If none of the 255 attempts produce the return behavior, we conclude that the actual 
mask is 0xc3.  

If more than one guess produces the apparently correct behavior, we place a known harmless instruction at the 
guessed position followed by a previously injected guess that produced the return behavior at the next stack position 
as shown in Figure 4. If this attempt does not exhibit the apparently correct behavior, we can safely eliminate the 
guessed mask since we know the injected byte did not decrypt to a harmless one-byte instruction as expected. Note 
that we do not need to know the exact mask for the next position, just a guess we have previously learned produces 
the return behavior at that location. This approach allows us to distinguish correct guesses from false positives at all 
locations except for the bottom address (the first one we guess since we are guessing in reverse order on the stack). 
In cases where multiple guesses are possible for the bottom location, we use its guessed mask only to eliminate 
false positives in the other guesses, but do not use that location to inject code.  

 
Figure 4. Eliminating false positives.
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Harmless instructions help us eliminate false positives for two reasons. If the guess is correct they have known 
behavior; otherwise, they may decrypt to either a harmful instruction or to an instruction with a different size that 
will alter the subsequent instructions. In the second case, it is possible to still produce the apparently correct 
behavior when the mask guess is incorrect. Hence, we learn conclusively when a mask is incorrect, but still cannot 
be sure the guess is correct just because it exhibits the correct behavior. 

The number of useful harmless one-byte instructions is limited by the density of x86 instruction set. If there are 
groups of harmless instructions with similar opcodes, it is hard to differentiate between them. Harmless instructions 
are only useful if an incorrect mask guess encrypts the guessed harmless instruction to an instruction that causes a 
crash. For example, if we use as harmless instructions a group of similar instructions such as clear carry flag (0xf8), 
clear direction (0xfc), complement carry flag (0xf5), set carry flag (0xf9), set direction flag (0xfd), the number of 
masks eliminated is in most of the cases is the same as if we had use only one of these instructions. Our attack uses 
three disparate one-byte harmless instructions: nop (0x90), clear direction (0xfc), and increment ecx register (0x42).  

For a given set of possible masks it would be possible to determine a minimal set of distinguishing harmless 
instructions, however this would add substantially to the length and complexity of the attack code. Instead, in the 
rare situations where the three selected one-byte harmless instructions are unable to eliminate all but one of the 
guessed masks, we use harmless two-byte instructions, of which there are many. This approach works for all 
locations except the next-to-bottom address. In the rare situations when it is not possible to determine the correct 
mask for this location, we can simply start the injected attack code further up the stack.  

Using harmless one-byte and two-byte instructions we are able to reduce the number of apparently correct masks to 
at most two. We cannot handle the case where the first instruction decrypts to a near return and pop instruction 
(0xc2 imm16) using this elimination process described because the near return (0xc3) and near return and pop 
(0xc2) opcodes differ by only their final bit. There is no harmless x86 instruction we can use to reliably distinguish 
them. When a harmless instruction is encrypted with an incorrect mask and decrypted with the correct masks, the 
opcode of the instruction executed differs only by one bit from the guessed harmless instruction. It is likely that this 
instruction will be a harmless instruction too. 

To distinguish between the two forms of near return we place the bytes 0xc2 0xff 0xff on the stack using the guessed 
masks. This is a near return which pops 65,535 bytes from the stack. For many target vulnerabilities (including our 
test server), this is enough to generate a crash. To use this approach, we need to already know the next two masks 
on the stack. This is not a problem because we start elimination from the bottom of the stack. The first two times we 
apply elimination with 0xc2 we have to execute an attempt for each combination of possible masks of the next two 
positions. After that, we know the correct masks for the locations where we place the 0xffff. 

For target applications for which popping 65,535 bytes from the stack does not cause a crash, we can use another 
type of elimination. After we guess enough bytes, we use a jump instruction to eliminate incorrect masks. We place 
a jump instruction with its offset encrypted using one of the apparently correct guessed masks. The jump instruction 
when the mask is correct will cause a jump to a memory location where a near return is placed. 



 
 

  99 

Once we have determined six or more masks, we can take advantage of additional injected instructions to further 
minimize the likelihood of false positives and improve guessing efficiency. These techniques are similar for both 
the return and jump attacks, and are described in Section 3.3. 

3.2 Jump Attack 

Because it involves guessing a 2-byte key and the distinguishing behavior is less particular, the jump attack is more 
prone to false positives than the return attack. Fortunately, the structure of the x86 instruction set can be used to 
take advantage of the false positives to improve the key search efficiency. 

There are four possible reasons the apparently correct behavior is observed for a jump attack guess: 

1. The correct key was guessed and the injected instruction decrypted to a jump with offset -2. 
2. The injected guess decrypted to some other instruction which produces an infinite loop. 
3. The injected instruction decrypted to a harmless instruction, and some subsequently executed 

instruction produces an infinite loop. 
4. The injected guess caused the server to crash, but because of network lag or server load, it still 

took longer than the timeout threshold the attacker uses to identify infinite loops. 

We can avoid case 4 by setting the timeout threshold high enough, but this presents a tradeoff between attack speed 
and likelihood of a false positive. A more sophisticated attack would dynamically adjust the timeout threshold. 
Since case 4 is likely to occur for many guesses and will not occur repeatedly for the same guess, case 4 is usually 
distinguishable from the other three cases and the attacker can increase the timeout threshold as necessary. 
From a single guess, there is no way to distinguish between case 1 (a correct guess) and cases 2 and 3. However, by 
using the results from multiple guesses, it is possible to distinguish the correct guesses in nearly all instances. 

For the second case, there are two kinds of false positives to consider: (1) the opcode decrypted correctly to 0xeb, 
but the offset decrypted to some value other than -2 which produced an infinite loop; or (2) the opcode decrypted to 
some other control flow instruction that produces an infinite loop.  

An example of the first kind of false positive is when the offset decrypts to -4 and the instruction at offset -4 is a 
harmless two-byte instruction. This is not a big problem, since, as we presented in Section 2.3, except for when we 
are guessing the first two bytes we are encrypting the offset with a known mask. When it does occur in the first two 
bytes, the attacker has several possibilities. One is to ignore this last byte and use only the memory locations above 
it. Another possibility is to launch different versions of the injected attack code, one for each possibly correct mask. 
Sometimes it would be faster to launch four versions of the attack code, one of which will succeed, than to 
determine a single correct mask at the bottom location.  

The second case, where the opcode is incorrect, is more interesting. The prevalence of these false positives, and the 
structure of the x86 instruction set, can be used to reduce the number of guesses needed. The other two-byte 
instructions that could produce infinite loops are the near conditional jumps. Like the unconditional jump 
instruction, the first byte specifies the opcode and the second one the relative offset. There are sixteen conditional 
jump instructions with opcodes between 0x70 and 0x7f. For example, opcode 0x7a is the JP (jump if parity) 
instruction, and 0x7b is the JNP (jump if not parity) instruction. Regardless of the state of the process, exactly one 
of those two instructions is guaranteed to jump. Conveniently, all the opcodes between 0x70 and 0x7f satisfy this 
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complementary property. Thus, for any machine state, exactly 8 of the instructions with opcodes between 0x70 and 
0x7f will jump, producing the infinite loop behavior if the mask for the offset operand is correctly guessed. When 
we find several masks sharing the same high four bits of the first byte that all produce infinite loops, we can be 
almost certain that those four bits correspond to 0x7.  

We can take further advantage of the instruction set structure by observing that if we try both guesses for the least 
significant bit in the opcode, we are guaranteed that one of the two guesses will produce the infinite loop behavior if 
the first four bits of the guess opcode are 0x7. That is, if we guess two complementary conditional jump 
instructions, one of them will produce the infinite loop behavior; it doesn’t matter what the other three bits are, 
since all of the conditional jump opcodes have the same property.  

This observation can be used to substantially reduce the number of attempts needed. Instead of needing up to 256 
guesses to try all possible masks for the opcode byte, we only need 32 guesses (0x00, 0x10, 0x20, ..., 0xf0, 0x01, 
0x11,...,0xf1) to try both possibilities for the least significant bit with all possible masks for the first four bits. Those 
32 guesses always find one of the taken conditional jump instructions. Hence, the maximum number of attempts 
needed to find the first infinite loop (starting with no known masks) is 213 (25 guesses for the opcode × 28 guesses 
for the offset). When the offset is encrypted with a known mask (that is, after the first two byte masks have been 
determined), at most 32 attempts are needed to find the first infinite loop. The expected number of guesses to find 
the first infinite loop is approximately 15.75 since we can find it by either guessing a taken conditional jump 
instruction or the unconditional jump. (This analytical result is approximate since it depends on the assumption that 
each conditional jump is taken half the time. Since the actual probability of each conditional jump being taken 
depends on the execution state, the actual value here will vary slightly.)  

After finding the first infinite loop producing guess, we need additional attempts to determine the correct mask. The 
most likely case (15/16ths of the time), is that we guessed a taken conditional jump instruction. If this is the case, we 
know the first four bits unmask to 0x7, but do not know the second four bits. To find the correct mask, we XOR the 
guess with 0x7 ⊕ 0xe and guess all possible values of the second four bits until an infinite loop is produced. This 
means we have found the 0xeb opcode and know the mask. Thus, we expect to find the correct mask with 8 
guesses. The other 1/16th of the time, the first loop-producing guess is the unconditional jump instruction. We 
expect to find two infinite loops within first four attempts. If we find them, we know we guessed the correct mask; 
otherwise we continue. We expect on average to use 15.75 guesses to find the first infinite loop and 7.75 guesses to 
determine the correct mask. Hence, after acquiring the first two key bytes, we expect to acquire each additional key 
byte using less than 24 guesses on average, while creating two infinite loops on the server. 

In rare circumstances, the first infinite loop encountered could be caused by something other than guessing an 
unconditional or conditional jump instruction. One possibility is the loop instruction. The loop instruction can 
appear to be an infinite loop since it keeps jumping as long as the value in the ecx register is non-zero. When ecx 
initially contains a high value the loop instruction can loop enough times to exceed the timeout for recognizing an 
infinite loop. There are several possible solutions: wait long enough to distinguish between the jump and the loop, 
find a vulnerability in a place where ecx has a low value (an attacker may be able to control the input in such a way 
to guarantee this), or to use additional attempts with different instructions to distinguish between the loop and jump 
opcodes. For simplicity, we used the second option: in our constructed server, the ecx register has a small value 
before the vulnerability. 

The other possibility is the injected code decrypts to a sequence of harmless instructions followed by a loop-
producing instruction. This is not as much of a problem as it is with the return attack since the probability of two 
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random bytes decrypting to a loop-producing instruction is much lower than the probability of a single random byte 
decrypting to a return instruction. Further, when it does occur, the structure of the conditional jumps in the 
instruction set makes it easy to eliminate incorrect mask guesses. The probability of encountering an infinite loop 
by executing random instructions was found by Barrantes, et al. to be only 0.02% [3]. However, since we are not 
guessing randomly but using structured guesses, the probability of creating infinite loops is somewhat higher. In the 
first step of the attack we generate all possible combinations for first two bytes. An infinite loop is created by an 
incorrect guess when first byte decrypts to a harmless one-byte instruction, and the second byte decrypts to a 
conditional or unconditional jump instruction, and the third byte decrypts to a small negative value. In this case 
both -2 and -3 will create infinite loops. To avoid false positives and increased load on the server, after we find the 
first infinite loop, we change the sign bit of the third byte. This changes the value to a positive one. If the loop was 
created by an incorrect mask, when we verify the mask with conditional jumps and fail to find the expected infinite 
loops we can conclude the mask guess is incorrect. 

3.3 Extended Attack 

The techniques described so far are adequate for obtaining a small number of key bytes. For ISR implementations 
that use a short repeated key, such as [12], obtaining a few key bytes is enough to inject arbitrarily long worm code. 
For ISR implementations that use a long key, however, an attacker may need to acquire thousands of key byte 
masks before having enough space to inject the malicious code. Acquiring a large number of key bytes with the 
jump attack is especially problematic since attempts leave processes running infinite loops running on the server. 
After acquiring several key bytes this way, the server becomes so sluggish it becomes difficult to distinguish guess 
attempts that produce crashes from those that produce infinite loops.  

Once we have learned a few masks, we can improve the attack efficiency by putting known instructions in these 
positions. With the jump attack, once we have guessed four bytes using short jumps, we change the guessed 
instruction to a near jump (0xe9). Near jump is a 5-byte instruction that takes a 4-byte offset as its operand. This is 
long enough to contain an offset that makes the execution jump back to the original return address. Hence, we no 
longer need to create infinite loops on the server to recognize a correct guess: we recognize the correct guess when 
the server behaves normally, instead of crashing. 

 
When the server has the properties required by the return attack, we will encounter false positives for the near jump 
guessed caused by a relative call (0xe8). Since the opcode differers from the near jump opcode in only one bit, we 
are not able to reliably distinguish between the two instructions using harmless instructions. Instead, we keep both 
possible masks under consideration until the next position is guessed, and then identify the correct mask by trying 
each guess for the offset mask. At worst, we need four times as many attempts because it is possible that there are 
two positions with two possible masks in the offset bytes. Despite requiring more attempts, this approach is 
preferable to the short jump guessing since it reduces the load on the server created by infinite loops.  
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Figure 5. Extended attack. 

Once we have acquired eight masks, we switch to the extended attack illustrated in Figure 5. The extended attack 
requires a maximum of 32 attempts per byte, and expected number of 23.5. The idea is to use a short jump 
instruction to guess the encryption key for current location with an offset that transfers control to a known mask 
location where we place a long jump instruction whose target is the original return address. The long jump 
instruction is a relative jump with a 32 bit offset. Hence, we need to acquire four additional mask bytes before we 
can use the extended attack with the jump attack.  

To eliminate false positives, we inject bytes that correspond to an interrupt instruction in the subsequent already 
guessed positions. Interrupt is a two-byte instruction (0xcd imm8). The second byte is the interrupt vector number. 
When the guessed instruction decrypts to a harmless instruction, the next instruction executed will be 0xcdcd (INT 
0xcd) which causes a program crash. The only value acceptable for the interrupt vector number in user mode when 
running on a Linux platform is 0x80 [5]. The key is to place enough 0xcd bytes in the region such that when the 
first instruction decrypts to some harmless non-jump instruction (which could be more than one byte), the next 
instruction to execute is always an illegal interrupt. Once we have room for six 0xcd bytes, we encounter no false 
positives.  

If any of the masks in this region are 0xcd, we cannot place a 0xcd byte at that location since injecting the necessary 
instruction which would require injecting a null byte. In this case, we place an opcode corresponding to a two-byte 
instruction (we use AND, but any instruction would work). The 0xcd will be the second byte of the two-byte 
instruction. After the two-byte instruction it will find a 0xcd which causes a crash. 

The most important advantage of this approach is that the only cases when the server sends the expected response 
are when (1) the first instruction executed is a taken unconditional jump; or (2) the first instruction executed is a 
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conditional jump where the condition is true. With the return attack there is a third case: the first instruction 
executed is a near return. This possibility can be eliminated using the techniques described in Section 3.1.  

The other advantage of this attack is that it does not need to create infinite loops on the server. Once we have 
enough mask bytes to inject a long jump instruction, we can distinguish correct guesses without putting the server 
in an infinite loop. Instead, the attacker is able to recognize a correct guess when it receives the expected response 
from the server. 

4. Deployment 

If the malicious code is small (for example, the Sapphire worm was 376 bytes [9]), we can acquire enough key 
bytes to inject it directly. This is reasonable if we are attacking a single ISR-protected machine using this approach 
and can run our attack client code on a machine we control to obtain enough key bytes to inject the malicious code. 
If the attacker wants to propagate a worm on a network of ISR-protected servers, however, the worm code needs to 
contain all the code for implementing the incremental key attack also. This may require acquiring more key bytes 
than can be done without the system administrator noticing the suspicious behavior and re-randomizing the server. 
Since the ISR-breaking code is inherently complex, even if the malicious payload is small many thousands of key 
bytes would be needed to inject the worm code. 

Our strategy is to instead inject a micro virtual machine (MicroVM) in the region of memory where we know the 
key masks. The MicroVM executes the worm code by moving small chunks of it at a time into the region where the 
key masks are known. The next subsections describe the MicroVM and how worm code can be written to work 
within our MicroVM. In order to make the MicroVM as small as possible we place restrictions and additional 
burdens on the worm code.  

4.1 MicroVM Implementation  

The MicroVM is illustrated in Figure 6. At the heart of the MicroVM is a loop that repeatedly reads a block of 
worm code into a region of memory where the masks are known and executes that code. The code (shown in 
Appendix A) is 98 bytes long (including the 22 bytes of space reserved for executing worm code).  
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Figure 6. MicroVM. 

Before starting the execution loop, the MicroVM initializes the worm instruction pointer (WormIP) to contain 0 to 
represent the beginning of the worm code. The WormIP stores the next location to read a block of worm code. 
Next, a block of worm code is fetched by copying the bytes from the worm code (from the WormIP) into an 
execution buffer inside the MicroVM itself, so that execution can simply continue through the worm code and then 
back into the MicroVM code without needing a call. The addresses of the beginning of the worm code and worm 
data space are hardcoded by the worm code into the MicroVM when it is deployed on a new host.  

No encryption is necessary when worm code is copied into the execution buffer, since the worm code was already 
encrypted with known key masks for the worm execution buffer locations where it will be loaded into the worm 
execution buffer. 
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Just before the execution of the worm block, the MicroVM pushes its registers on the stack and then restores the 
worm’s registers from the beginning of the worm data region. After the buffer’s execution, the MicroVM saves the 
worm’s registers to the worm data region. In the last step, the MicroVM restores its registers and then jumps back 
to the beginning of the MicroVM code to execute the next block of worm code.  

4.2 Worm Code 

To work in the MicroVM, the worm code is divided into blocks matching the size of the worm execution buffer (22 
bytes in our implementation). No instruction can be split across these blocks, so the worm code is padded with nops 
as necessary to prevent instructions from crossing block boundaries. The worm code cannot leave data on the 
execution stack at the end of a block, since the MicroVM registers are pushed on the stack just before the worm 
execution begins. To use persistent data, the worm must write into locations in the worm data space instead of using 
the execution stack. 

The most cumbersome restrictions involve jumps. Any jump can occur within a single worm block, but jumps that 
transfer control to locations outside the buffer must be done differently since all worm code must executed at 
known mask locations in the worm buffer. Our solution is to require that all jumps must be at the end of a worm 
code block, and all jump targets must be to the beginning of a worm code block. Instead of actually executing a 
jump, the worm code updates the value of the WormIP (which is now stored in a known location in memory, and 
will be restored when the MicroVM resumes) to point to the target location, and then continues into the MicroVM 
code normally so the target block will be the next worm code block to execute. To implement a conditional jump, 
we use a short conditional jump with the opposite condition within the worm buffer to skip the instruction that 
updates the WormIP when the condition is unsatisfied.  

4.3 Propagation 

To propagate, the worm uses the techniques described in Section 3 to acquire enough key bytes to hold the 
MicroVM. Those key bytes are stored in the worm data region. The MicroVM code is 98 bytes long so at least 98 
key bytes are needed. We may need to acquire a few additional key bytes to avoid needing to place null bytes in the 
attack code. If the mask found for a given location matches the bytes we want to put there, we instead put a nop 
instruction at that location and obtain an extra key byte. As long as the masks are randomly distributed, two or 
fewer will be sufficient over 99% of the time, so we can nearly always inject the worm once 100 key bytes have 
been acquired.  

To generate an instance of the worm for a new key, we XOR out the old key bytes from the worm code and XOR in 
the new key bytes. To support this, the propagated worm data includes th host’s acquired mask bytes. As with the 
injected MicroVM code, we need to worry about the impossibility of injecting null bytes. We insert nops in the 
injected worm code as necessary to avoid null bytes. If the added nops would cause a worm code block to exceed 
the available space, we need to create a new block and move the overflow instructions into that block. Jump targets 
in the worm code may need to be updated to reflect insertion of the new block. 

5. Results 

To test our attack we built a small echo server with a buffer overflow vulnerability. The application waits for a 
client to connect. When the client connects, the server forks a process to process its request. The next step is to call 
a method which has a local buffer that can be overflowed. This method reads the request from the client and writes 
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back an acknowledgment message. After this method call the application sends a termination message (“Bye”) and 
closes the socket. Although we use a contrived vulnerability to make the attack easier to execute and analyze, 
similar vulnerabilities are found in real applications.  

5.1 Attack Client 

The attack client structure is the same for both the jump and return attacks. For each guess attempt, the attack client 
(1) opens a socket to the server, (2) builds an attack string, (3) writes it to the socket, (4) reads the acknowledgment, 
(5) installs an alarm signal handler, (6) sets up an alarm, and (7) reads the termination message or handles the alarm 
signal. The return attack recognizes a possibly correct guess when it receives the termination message in step 7; the 
jump attack recognizes a possibly correct guess when the alarm signal handler is called before the socket is closed.  

The attack strategy used for different key bytes is depicted in Figure 7. The number of key bytes guessed by the 
attack is denoted by size. For vulnerabilities suitable for the return attack, the first eight positions are guessed using 
the return instruction. The rest are guessed using the extended short jump attack (expected 23.5 attempts per byte). 
For the jump attack, the first two key bytes acquired have positions size-1 and size-2. We guess those two bytes 
simultaneously, using the 2-byte jump instruction to create an infinite loop. The next two bytes are guessed 
separately using the jump instruction to create an infinite loop. After the fourth byte is acquired, we do not 
(intentionally) create any more infinite loops. For the next six bytes, we use near jump, with a worst case of 1024 
attempts per byte. After this position, we use the extended short jump attack.  

 

 
Figure 7. Guessing strategies. 
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For the attack client to be efficient there are some constraints on the address where the attack starts. For both attacks 
the address has to be far enough from the next smaller address which has null as its last byte so we have enough 
space to place two short jump instructions, and a sufficient number of illegal opcodes. As long as the vulnerable 
buffer is sufficiently large, the attack client can find a good location to begin the attack.  

We ran our client normally, not inside the MicroVM. Hence, our results correspond to the time needed to launch the 
initial attack on the first ISR-protected server. The attack time would increase for later infections because of the 
additional overhead associated with executing in the MicroVM. 

5.2 Target 

We executed our attack on our constructed vulnerable server protected by RISE [3]. The RISE implementation 
presents a major difficulty in executing our attack because of the way it implements fork, pthreads and 
randomization keys. This necessitated a small modification to RISE in order for our attack to succeed. Other ISR 
implementations, however, may be vulnerable to our attack without needing this modification. 

RISE uses a different key to randomize an application each time it is started. Since the attack causes the server to 
crash, the attack can only work against a server that forks separate processes to handle client requests. Valgrind [16] 
(the emulator modified to implement RISE) implements pthreads to use only one process. Thus, if the attack 
crashes a thread, then the entire server will crash and the next execution will use a different randomization key. So, 
our attack will only work against a server that forks separate processes.  

When RISE loads an application, a cache data structure is initialized that holds the key mask for each instruction 
address that has been loaded. There is a different randomization key byte for each byte in the text segment, and the 
mask value is stored in the cache the first time the corresponding instruction address is loaded. 

The fork call is forwarded to the operating system and results in a new child process running the emulator. When 
the injected instructions execute, the child process will determine that no mask has been initialized for the address 
on the stack and it will generate a new one. Hence, the child process will share the same randomization key for the 
addresses already loaded in memory at fork time, but for the addresses it accesses later it will use it’s own key. This 
is problematic since the incremental attack only works if multiple attempts can be launched attacking the same key. 

Perhaps an attacker could control the execution enough to ensure that the necessary masks are initialized before the 
child process forks to ensure they would be the same on all executions. This would only happen, however, if the 
server legitimately ran code on the stack before reaching the vulnerability. Hence, the RISE implementation of ISR 
is not vulnerable to our attack.  

In order to experiment with our attack, we modified RISE to initialize the masks for all used instruction addresses 
before the child process forks to ensure that all child processes have the same key. Obviously, a real attacker would 
not have this opportunity.  

In addition to the problems caused by the emulator itself, we encountered others caused by the operating system. 
The Fedora Linux distribution has address space layout randomization enabled by default. For our experiments, we 
disabled this defense. Attacks on systems using both address and instruction randomization pose additional 
challenges that are beyond the scope of this paper. 



 
 

  108 

5.3 Experimental Results 

Table 1, Figure 8 and Figure 9 summarize the results from our experiments. The target and client ran on separate 
Linux dual AMD Athlon XP 2400+ machines. connected to the same network switch. For key lengths up to 128, we 
executed 100 trials; for longer keys, we executed 20 trials. In all cases, our attacks are nearly always able to obtain 
the correct key and the attack completes in under one hour, even for acquiring a 4096-byte key using the jump 
attack. A successful attack is an execution in which the attack client correctly guesses the desired number of key 
bytes. Every key byte must be correct for us to consider the attack a success.  

 

 
Table 1. Jump attack results (averages over all trials). 

The experiments confirm the analytical predictions regarding the decrease of number of attempts per byte as key 
length increases. After breaking the first 12 bytes, fewer than 24 guess attempts are required per byte to acquire 
additional key bytes. On average, we can break a 100-byte key (enough to inject our MicroVM code) in just over 
six minutes with the jump attack. The return attack is faster, and requires less than two minutes. The difference is 
the additional approximately 4000 expected attempts the jump attack needs to guess the first two bytes 
simultaneously. The other difference is the increased time per attempt needed for the jump attack stemming from 
the infinite loops running on the server. The return attack produces an infinite loop on the server only in the unlucky 
circumstances when a random instruction happens to produce an infinite loop. In our experiments, the average 
number of infinite loops created during a return attack is 0.76. Rarely, we may be unlucky and create many infinite 
loops with the return attack (such as was the case for the extreme maximum time value in breaking a 4-byte key in 
Figure 8). The jump attack must create several infinite loops to guess the first key bytes. The actual number of 
loops created, shown in Table 1, varies depending on the number of apparently correct offset values.  
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Figure 8. Time to acquire key bytes. Figure 9. Attempts per byte. 
Times are wall-clock times measured by the client for the duration of the attack. The marked points are the median values and the bars show the 95th 

percentile maximum and minimum results over all trials. 

In our initial experiments, we had surprising results where trials guessing 32-byte keys were always taking longer 
than guessing 2048-byte keys. The bytes placed on the stack during the near jump phase of the 32-byte attack 
(guessing mask bytes 5 through 11) included an 0xfe byte. This meant if the guessed instruction decrypted to a 
harmless instruction the execution could fall through to the 0xfe instruction and generate an infinite loop. Instead of 
the typical number of infinite loops, over 20 infinite loops were being created. This increased the server load 
enough to make the 32-byte key trials take longer than the 2048-byte keys. We modified the attack client to avoid 
this problem by making it select an address for starting the guessing that ensures 0xfe will not appear in the near 
jump offset.  

In a few cases, our attack was not able to determine the correct key. The failures are caused by the inability to use 
certain masks because injecting the desired encrypted byte would require placing a null byte on the stack, which 
will cause the attack string to end before the return address is overwritten. Workarounds are possible, and necessary 
for the common cases. For example, in the return attack we will get an incorrect mask when a position has an 
apparently correct guess, but the mask is the return opcode. We assume 0xc3 is the correct mask when all the other 
255 masks fail to produce the return behavior. Similarly, for the jump attack we will have false positives when the 
mask for the last position guessed is 0xfe. Our experimental results demonstrate that with the strategies we use the 
likelihood of incorrect guesses is small enough that it is not worth increasing the length and complexity of the 
attack code to deal with the rare special cases. 
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6. Discussion 

Our attack is essentially a chosen-ciphertext attack on an XOR encryption scheme. If we obtain a known ciphertext-
plaintext pair with such a cipher, obtaining the encryption key is a trivial matter of XORing the plaintext and 
ciphertext. The challenge is obtaining a known plaintext. We do not actually obtain the plaintext for a given 
ciphertext guess, but instead obtain clues from the remotely observed behavior. After enough guesses, though, we 
can reliably determine the corresponding plaintext for an input ciphertext, and acquire the key. 

This suggests some simple modifications to ISR implementations that can be used to make incremental guessing 
attacks much less likely to succeed. Our attack strategy would not work against any ISR scheme that uses an 
encryption algorithm that is not susceptible to a simple known plaintext-ciphertext attack. Any modern block 
encryption algorithm (such as AES [8]) satisfies this property. Unfortunately, the performance overhead of 
decrypting executing instructions with such an algorithm may be prohibitive. A more efficient but less secure 
alternative might be to randomly map each 8-bit value to a value using a lookup table. Combining this with the 
XOR encryption would make incremental key attacks like we propose much more difficult since it would hide the 
structure of the actual instruction set from the adversary.  

The other property our attack relies on that is easily altered is the need to make many attempts that crash a process 
against a binary randomized using the same key. RISE is largely invulnerable to our attack because of the way it 
uses different randomization keys for forked processes. If re-randomizing is inexpensive, an implementation that re-
randomizes the binary after every process or thread crash would not be susceptible to incremental key breaking 
attacks. This approach, however, does make the server increasingly vulnerable to denial-of-service attacks since all 
an attacker needs to do to force the server to shutdown and restart itself with a new randomization key is to crash a 
single thread.  

The details of our attacks are heavily dependent on the x86 instruction set. In particular, our attacks rely on the 
presence of short (one or two-byte) control instructions and short harmless instructions, and benefit substantially 
from the structure of the conditional jump instructions. For any RISC architecture with fixed instruction length, the 
minimum number of key bits that must be guessed at once is determined by the instruction length. Most RISC 
architectures use instruction lengths of at least 32 bits, which is probably too long to realistically guess using a 
brute-force approach. 

7. Conclusion 

We have demonstrated that servers protected using ISR may be vulnerable to an incremental key-breaking attack. 
Our attack enables a remote attacker to acquire enough key bytes to inject an arbitrarily long worm in an ISR-
protect server in approximately six minutes using the jump attack. 

Our results apply only to the use of ISR at the machine instruction set level; our techniques could not be used 
directly to attack ISR defenses for higher-level languages such as SQL [6] and Perl [12]. 

Our results indicate that doing ISR in a way that provides a high degree of security against a motivated attacker is 
more difficult than previously thought. The most efficient ISR proposals, such as the repeated 32-bit XOR key, 
provide little security under realistic conditions. This does not mean ISR is no longer a promising defense strategy, 
but it means designers of ISR systems must consider carefully how effectively their randomization thwarts possible 
strategies for remotely determining the randomization key.  
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A. MicroVM Code 

The MicroVM code is shown below using NASM assembly code [14]. For clarity, we use symbolic constants in 
this code; the appropriate values would be hard coded into the injected code by the worm during deployment. 
NUM_BYTES is the size of the worm execution buffer (22), DATA_OFFSET is the offset from the beginning of 
the worm code to the beginning of the data (a four-byte value), and REG_BYTES is the number of bytes used to 
store the worm registers (24).  

_start:  
      push ebp ; save frame pointer 
      ; get location of stored worm registers  
      mov ebp, WORM_ADDRESS + REG_OFFSET  
      pop dword [ebp + DATA_OFFSET], ebp 
      xor eax, eax ; eax is the IP into worm 
      ; WormIP = eax (zeroing eax starts at the beginning) 
 
read_more_worm: 
      ; copy next NUM_BYTES into worm execution buffer 
      cld 
      xor ecx, ecx  
      mov byte cl, NUM_BYTES 
      mov dword esi, WORM_ADDRESS 
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      ; get WormIP (points at next instruction to fetch) 
      add dword esi, eax 
      mov edi, begin_worm_exec 
      rep movsb 
      ; change next WormIP to point to next block 
      add eax, NUM_BYTES  
      pushad ; save MicroVM registers 
 
      ; load worm registers 
      mov edi, dword [ebp + EDI_OFFSET] 
      … ; do the same for esi, eax, ebx, ecx, and edx 
 
begin_worm_exec:  
      nop ; Reserve NUM_BYTES using nops to leave 
      nop ; room for worm code fragment 
      … ; end of worm code space 
 
      ; save worm registers 
      mov [ebp + EDI_OFFSET],edi 
      … ; do the same for esi, eax, ebx, ecx, and edx 
 
      popad ; load MicroVM registers 
      jmp read_more_worm 
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Acronym List 
 
AES Advanced Encryption Standard 
API Application Programmer Interface 
ASR Address Space Randomization 
BAA Broad Agency Announcement 
BIND Berkeley Internet Net Daemon 
CERT Computer Emergency Response Team 
CSD Calling Sequence Diversity 
DOD Department Of Defense 
GAO General Accountability Office 
GDT Genesis Diversity Toolkit 
GNU GNU’s Not Unix 
GSM Groupe Special Mobile 
HTTP HyperText Transfer Protocal 
ISR Instruction Set Randomization 
MAC Message Authentication Code 
OS Operating System 
PC Program Counter 
PHP PHP: Hypertext Preprocessor 
QOS Quality Of Service 
RISE Randomize Instruction Set Emulation 
SDR Software-Defined Radio 
SER Simple Execution Randomization 
SISR Strong Instruction Set Randomization 
SPEC Standard Performance Evaluation Corporation 
SQL Structured Query Language 
SRS Self-Regenerative System 
SSR Stack Space Randomization 
VM Virtual Machine 
XSS Cross-Site Scripting 

 

 




